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Model

n – number of independent objects
p – number of features

Multivariate t model:

T = (t1, . . . , tn), ti ∼ tp (ν,µ,Σ)

ν – degrees of freedom of multivariate t distribution

E(ti) = µ, D(ti) = ν
ν−2Σ

Kotz, Nadarajah (2004):

f(T) =

(
Γ(ν+p

2 )
Γ(ν

2)(νπ)
p/2

)n

|Σ|−
n
2

(
n∏

i=1

[
1 + 1

ν (ti − µ)′Σ−1 (ti − µ)
])−ν+p

2
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Maximum likelihood estimators (MLEs)
EM algorithm (Liu and Rubin, 1995)
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i

MLE of ν (McLachlan and Krishnan, 1997)
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Ψ(·) – digamma function
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Commutative quadratic subspace (Seely, 1971)

The linear space V is a quadratic subspace if V ∈ V implies that
V2 ∈ V . Moreover, V is a commutative quadratic subspace if the
product of two matrices belonging to V is commutative.

If Σ belongs to quadratic subspace, then

Σ =
ℓ∑

j=1

λjVj

λj > 0
Vj, j = 1, . . . , ℓ – known, idempotent and strongly orthogonal matrices

(V2
j = Vj and VjVj′ = 0 for j ̸= j′).
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Commutative quadratic subspace - examples

sphericity: λ1Ip
diagonality: Diag(λ1, . . . , λp)
compound symmetry (CS): λ1Pp + λ2(Ip −Pp), Pp =

1
p1p1

′
p

circular Toeplitz (CT):
∑k

j=1 λjVj, k = ⌊p2⌋+ 1
block-diagonal with CS blocks
block-CS with CT blocks

Matrix from commutative quadratic subspace – matrix isomorphic with

Bdiag(λ1Ip1, . . . , λℓIpℓ),
ℓ∑

j=1

pj = p

(Filipiak et al., 2025)

K. Filipiak et al. Testing quadratic structure under multivariate t Warsaw, 2025 5 / 24



Commutative quadratic subspace - examples

sphericity: λ1Ip
diagonality: Diag(λ1, . . . , λp)
compound symmetry (CS): λ1Pp + λ2(Ip −Pp), Pp =

1
p1p1

′
p

circular Toeplitz (CT):
∑k

j=1 λjVj, k = ⌊p2⌋+ 1
block-diagonal with CS blocks
block-CS with CT blocks

Matrix from commutative quadratic subspace – matrix isomorphic with

Bdiag(λ1Ip1, . . . , λℓIpℓ),
ℓ∑

j=1

pj = p

(Filipiak et al., 2025)
K. Filipiak et al. Testing quadratic structure under multivariate t Warsaw, 2025 5 / 24



Hypothesis and tests

H0 : Σ =
ℓ∑

j=1

λjVj H1 : Σ is unstructured

Tests:

likelihood ratio test (LRT)

Rao score test (RST)

Wald test (WT)
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Maximum likelihood estimators (MLEs)

ν0, µ0 – degrees of freedom and mean under H0 : Σ =
ℓ∑

j=1

λjVj
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Likelihood ratio test
Theorem

The LRT statistic for testing H0: Σ = Σ0, when no constraints are imposed on µ
and ν, is given by

LRT(T) = n

[
ν̂ ln ν̂ − ν̂0 ln ν̂0 + 2 ln

Γ( ν̂+p
2

)Γ(
ν̂0
2
)

Γ(
ν̂0+p

2
)Γ( ν̂

2
)
+ ln |Σ̂0|

|Σ̂|

]
+(ν̂0 + p)

n∑
i=1

ln
[
ν̂0 + (ti − µ̂0)

′Σ̂
−1

0 (ti − µ̂0)
]

−(ν̂ + p)
n∑

i=1

ln
[
ν̂ + (ti − µ̂)′Σ̂

−1
(ti − µ̂)

]
,

where T = (t1, . . . , tn) is a random sample of size n from tp(ν,µ,Σ), ν > 2 is

unknown, ν̂, µ̂, Σ̂ are the MLEs of ν, µ and Σ under H1, and ν̂0, µ̂0, λ̂j,

j = 1, . . . , ℓ, (coefficients in Σ̂0) are the MLEs of ν0, µ0, Σ0 under H0.
When n → ∞ and H0 holds, the distribution of LRT tends to the chi-square
distribution with p(p+ 1)/2− ℓ degrees of freedom.

K. Filipiak et al. Testing quadratic structure under multivariate t Warsaw, 2025 8 / 24



Rao score test
Theorem
The RST statistics for testing H0: Σ = Σ0, when no constraints are imposed on µ
and ν, is given by

RST(T) = n(ν̂0+p+2)
2ν̂0(ν̂0+p)

{
ν̂0 · Tr[(ÛΣ̂

−1

0 )2] + Tr2(ÛΣ̂
−1

0 )
}
,

with

Û = Û(T) = Σ̂0 − ν̂0+p
n

n∑
i=1

(ti − µ̂0)(ti − µ̂0)
′

ν̂0 + (ti − µ̂0)
′Σ̂

−1

0 (ti − µ̂0)
,

where T = (t1, . . . , tn) is a random sample of size n from tp(ν,µ,Σ), ν > 2 is

unknown, and ν̂0, µ̂0, λ̂j, j = 1, . . . , ℓ, (coefficients in Σ̂0) are the MLEs of ν0, µ0, Σ0

under H0.
When n → ∞ and H0 holds, the distribution of RST tends to the chi-square
distribution with p(p+ 1)/2− ℓ degrees of freedom.

!!! RST can be used also for n < p, which is not the case for LRT !!!
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−1

0 )2] + Tr2(ÛΣ̂
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LRT and RST: known ν

Remark 1
When the degrees of freedom ν of multivariate t distribution is the same under the null
and alternative hypothesis (which happens for example when ν is known) the LRT and
RST become, respectively,

LRT (T) = n(ln |Σ̂0| − ln |Σ̂|) + (ν + p)
n∑

i=1

ln ν+(ti−µ̂0)
′Σ̂

−1
0 (ti−µ̂0)

ν+(ti−µ̂)′Σ̂
−1

(ti−µ̂)

and
RST(T) = n(ν+p+2)

2ν(ν+p)

{
ν · Tr[(ÛΣ̂

−1

0 )2] + Tr2(ÛΣ̂
−1

0 )
}

with

Û = Û(T) = Σ̂0 − ν+p
n

n∑
i=1

(ti − µ̂0)(ti − µ̂0)
′

ν + (ti − µ̂0)
′Σ̂

−1

0 (ti − µ̂0)
.
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LRT and RST: ν → ∞

Remark 2
When the degrees of freedom ν of multivariate t distribution tend to infinity (i.e.,
multivariate t distribution tends to the normal distribution), respective MLEs change

into µ̂ = µ̂0 =
1
n
T1n = T, Σ̂ = 1

n
T(In − 1

n
1n1

′
n)T

′ = S, λ̂j =
1

TrV j
Tr(VjS), and

the test statistics become, respectively,

LRT (T) = n ln
|Σ̂0|
|S|

and RST(T) =
n

2
Tr[(Ip − SΣ̂

−1

0 )2].

Above results are in line with the forms of test statistics determined under the multivariate

normal distribution for testing compound symmetry structure (Filipiak et al., 2017, Roy

et al. 2018)
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Wald test for simple and composite hypothesis

Simple hypothesis: (Rao, 2005)

H0 : θ = θ0 WT = (θ̂ − θ0)
′F(θ̂)(θ̂ − θ0)

Composite hypothesis:

H0 : h(θ) = c WT = (h(θ̂)− c)′A−1(θ̂)(h(θ̂)− c)

A(θ) = H(θ)F−1(θ)H′(θ), H(θ) =
∂h(θ)

∂θ

H0 : Σ =
ℓ∑

j=1

λjVj − composite hypothesis
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Alternative representation of H0

Σ =
ℓ∑

j=1

λjVj isomorphic with Σ∗ = Diag(λ11
′
v1
, . . . , λℓ1

′
vℓ
)

CPD+
p (V

′ ⊗V′)vecΣ = 0

C =
(
0q∗×q : Diag(Cq+1, . . . ,Cℓ, Ip(p−1)/2)

)
, q∗ = p(p− 1)/2 +

ℓ∑
j=q+1

(TrVj − 1)

Cj =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

 : (TrVj − 1)× TrVj

P− particular permutation matrix of order p(p+1)
2 , Dp − p× p(p+1)

2 duplication matrix

V = (V∗
1, . . . ,V

∗
ℓ ), V∗

jV
∗′

j = Vj
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Wald test (WT)

H0 : CPD+
p (V

′ ⊗V′)vecΣ = 0

Theorem
The WT statistic for testing H0, when no constraints are imposed on µ and ν, is given
by

WT(T) = vech′Σ̂∗P
′C′
(
CPF̂

−1

∗ P′C′
)−1

CPvechΣ̂∗

with
F̂∗ =

n
2(ν̂+p+2)

D′
p

(
(ν̂ + p)(Σ̂

−1

∗ ⊗ Σ̂
−1

∗ )− vecΣ̂
−1

∗ vec′Σ̂
−1

∗

)
Dp,

where T = (t1, . . . , tn) is a random sample of size n from tp(ν,µ,Σ), ν > 2 is

unknown, ν̂ is the MLE of ν, Σ̂∗ = V′Σ̂V, and Σ̂ is the MLE of Σ under H1.
When n → ∞ and H0 holds, the distribution of WT statistic tend to the chi-square
distribution with p(p+ 1)/2− ℓ degrees of freedom.
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WT: known ν, ν → ∞

Remark 3
When the degrees of freedom ν of multivariate t distribution is known, the WT statistic
remains the same, however, in the formula for F̂∗ the estimator ν̂ is replaced by ν.

Remark 4
When the degrees of freedom ν of multivariate t distribution tend to infinity in the
above remark (i.e., multivariate t distribution tends to the normal distribution), the

MLE of Σ becomes S and hence Σ̂∗ = V′SV. Then, the WT statistic has the form

WT(T) = vech′(V′SV)P′C′
(
CPF̂

−1

# P′C′
)−1

CPvech(V′SV)

with
F̂# = n

2
D′

p(V
′ ⊗V′)(S−1 ⊗ S−1)(V ⊗V)Dp.
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Empirical null distributions (unknown ν)
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Simulation studies - main conclusions

1 For each test statistic, the empirical null distributions do not differ significantly
when ν is known or unknown:

the speed of convergence to the limiting chi-square distribution is the
highest for the distribution of RST, and the lowest for WT
the empirical type I error tends to the nominal significance level (α = 0.05)
quicker than its counterparts for LRT and WT
the LRT is the most liberal test, while the WT - the most conservative

2 The estimation of ν is challenging; we used the EM algorithm presented by
McLachlan and Krishnan (1997, Sect. 5.8). Nevertheless, the EM algorithm does
not always converge, especially when the sample size is small. The number of
non-converging (nc) cases to obtain 10000 results:

p 3 7
n 10 25 50 200 10 25 50 200
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Data analysis (Liang et al., 2015)

11 Kalanchoe plants with 3 flowers per plant, 4 petals per flower
ti – vector of the petals length, i = 1, . . . , n

(C1): There is no hierarchical structure in measurements, all 33 flowers are treated
equally, despite the fact that they are allocated on the same plant; in this setup
the 4× 4 compound symmetry (CS) structure is tested, which means that the
lengths of all four petals are equally correlated with each other

(C2): There is no hierarchical structure in measurements, but since 3 flowers are
allocated on the same plant, corresponding measurements are not independent;
thus, the subset of 11 flowers is randomly chosen (1 flower from each plant) and
the 4× 4 CS structure is tested
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(C1) and (C2) structure - results

Table: The values of LRT, RST and WT statistics under multivariate t3 distribution
and under multivariate normality, with respective 95% empirical and limiting quantiles
for testing CS covariance structure for Kalanchoe plants data.

(C1): n = 33 (C2): n = 11
LRT RST WT LRT RST WT

under multivariate t3 4.500 4.739 3.569 13.291 9.103 5.358
empirical quantile 17.078 15.692 9.963 20.560 15.828 5.574
under normality 6.572 6.784 5.406 13.922 7.759 11.321
empirical quantile 17.056 15.709 14.313 21.086 15.519 11.764
limiting quantile 15.507 15.507 15.507 15.507 15.507 15.507

CS structure is not rejected
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Data analysis

(C3): Hierarchical structure of measurements has an impact on covariance structure; in
this setup the sample of size 11 (number of plants) is taken to test the hypothesis
about 12× 12 block-compound symmetry covariance structure with compound
symmetry structure of each 4× 4 block (BCS CS). The block-compound
symmetry is motivated by the circular arrangement of three flowers on the plant,
while compound symmetry of each block follows from the assumption that the
lengths of all four petals are equally correlated with each other
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Data analysis

(C4): The same hierarchical structure of measurements as in Case (C3), however, the
structure of 4× 4 blocks of covariance matrix corresponds to circular Toeplitz
matrix structure (BCS CT). It means, that the neighboring petals are equally
correlated, while the petals arranged opposite each other are equally correlated,
but not in the same way as neighboring petals
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(C3) and (C4) structures - results

Table: The values of RST statistics under multivariate t3 distribution, under
multivariate tν distribution with unknown ν and under multivariate normality, with
respective 95% empirical and limiting quantiles for testing BCS CS and BCS CT
covariance structure for Kalanchoe plants data.

BCS CS BCS CT
under multivariate t3 99.405 91.654
empirical quantile 100.419 98.045

under multivariate tν 108.078 101.671
empirical quantile of t8 / t9 101.422 99.595

under normality 131.428 80.602
empirical quantile 103.025 100.399
limiting quantile 95.082 92.808
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Summary

1 Multivariate t distribution:

the algorithm for determination of MLEs of ν, µ and Σ is presented
LRT, RST and WT statistics for testing covariance structure from
commutative quadratic subspace are determined
it is shown that the RST outperforms remaining tests

2 Multivariate normal distribution:
LRT, RST statistics for testing covariance structure from commutative
quadratic subspace are determined (so far only the results for testing CS
have been presented)
WT statistic for testing covariance structure from commutative quadratic
subspace is determined
it is shown that the RST outperforms remaining tests
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