Estimating partial correlations and recovering network hubs with PCGLASSO

Adam Chojecki, Ivan Hejny, Bartosz Kolodziejek, Jonas Wallin, *Malgorzata Bogdan*

Warsaw University of Technology, University of Wroclaw, Lund University

30/06/2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Introduction and Motivation

- Graphical LASSO (GLASSO)
- Partial Correlation LASSO (PCGLASSO)
 - Algorithm
 - Convexity issues
 - Asymptotic distribution
 - Irrepresentability condition
 - Identifying the hub structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 (X_1, \ldots, X_p) - p dimensional random vector

 (X_1, \ldots, X_p) - p dimensional random vector

 $\Sigma_{p imes p}$ - covariance matrix

 (X_1, \ldots, X_p) - p dimensional random vector

 $\Sigma_{p imes p}$ - covariance matrix

$$\Sigma_{i,j} = Cov(X_i, X_j) = E(X_i - \mu_i)(X_j - \mu_j)$$

 (X_1, \ldots, X_p) - p dimensional random vector

 $\Sigma_{p imes p}$ - covariance matrix

$$\Sigma_{i,j} = Cov(X_i, X_j) = E(X_i - \mu_i)(X_j - \mu_j)$$

 $\Omega = \Sigma^{-1}$ - precision matrix

Motivation: Global Minimum Variance Portfolio

 $R = [R_1 \ \cdots \ R_K]'$ - a random vector of returns

$$\mu = [\mathbb{E}[R_1] \cdots \mathbb{E}[R_K]]'$$

$$\Sigma = \mathbb{E}\left[(R - \mu)(R - \mu)'\right].$$

$$w \in R^K \quad \text{- portfolio weights}$$

$$Var(w'R) = w'\Sigma w$$

$$w^* = \underset{w \in \mathbb{R}^K}{\operatorname{arg min}} w'\Sigma w \text{ subject to } w'\mathbf{1}_K = 1,$$

$$w^* = \frac{\Sigma^{-1}\mathbf{1}_K}{\mathbf{1}'_K \Sigma^{-1}\mathbf{1}_K}$$

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < </p>

Graphical Model

 $X = (X_1, \ldots, X_p)$ - a random vector

Graphical Model

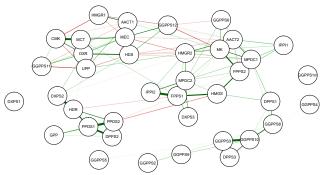
$$\begin{split} &X = (X_1, \dots, X_p) \text{ - a random vector} \\ &\text{Graph: } G = (V, E) \\ &\text{Vertices (V): indices (names) of components of } X: V = \{1, \dots, p\} \\ &\text{Edges (E): } (u, v) \notin V \Longleftrightarrow X_u \perp X_v | X_{V \setminus \{u, v\}} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Graphical Model

$$\begin{split} &X = (X_1, \dots, X_p) \text{ - a random vector} \\ &\text{Graph: } G = (V, E) \\ &\text{Vertices (V): indices (names) of components of } X: V = \{1, \dots, p\} \\ &\text{Edges (E): } (u, v) \notin V \Longleftrightarrow X_u \bot X_v | X_{V \setminus \{u, v\}} \end{split}$$

Glasso



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$X=(X_1,\ldots,X_p)\sim {\sf N}(0,\Sigma), \;\; \Omega=\Sigma^{-1} \;\;$$
 - precision matrix

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$X = (X_1, \ldots, X_p) \sim N(0, \Sigma), \ \ \Omega = \Sigma^{-1}$$
 - precision matrix

$$X_i \parallel X_j | X_{V \setminus \{u,v\}} \iff \Omega_{ij} = 0$$

$$X = (X_1, \dots, X_p) \sim N(0, \Sigma), \quad \Omega = \Sigma^{-1}$$
 - precision matrix
 $X_i \perp X_j | X_{V \setminus \{u,v\}} \iff \Omega_{ij} = 0$
Example: for $j = 2, \dots, p$ $X_j = X_1 + \varepsilon_j$, where
 $Var(X_1) = Var(\varepsilon_j) = 2$

・ロト・「四ト・「田下・「田下・(日下

• •

$$X = (X_1, \dots, X_p) \sim N(0, \Sigma), \quad \Omega = \Sigma^{-1}$$
 - precision matrix
 $X_i \perp X_j | X_{V \setminus \{u,v\}} \iff \Omega_{ij} = 0$
Example: for $j = 2, \dots, p$ $X_j = X_1 + \varepsilon_j$, where
 $Var(X_1) = Var(\varepsilon_j) = 2$
for $i \neq j$, $Cov(X_i, X_j) = Var(X_1) = 2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$X = (X_1, \dots, X_p) \sim N(0, \Sigma), \ \ \Omega = \Sigma^{-1}$$
 - precision matrix

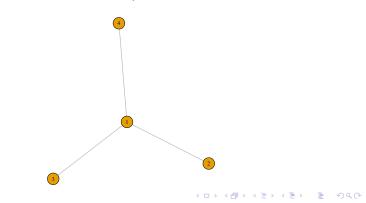
$$X_{i} \perp X_{j} | X_{V \setminus \{u,v\}} \Longleftrightarrow \Omega_{ij} = 0$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example: for j = 2, ..., p $X_j = X_1 + \varepsilon_j$, where $Var(X_1) = Var(\varepsilon_j) = 2$ for $i \neq j$, $Cov(X_i, X_j) = Var(X_1) = 2$ for $j \ge 2$, $Var(X_j) = 4$ Hub

$$\Sigma = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 \\ 2 & 2 & 4 & 2 \\ 2 & 2 & 2 & 4 \end{bmatrix}, \Omega = \begin{bmatrix} 2 & -0.5 & -0.5 & -0.5 \\ -0.5 & 0.5 & 0 & 0 \\ -0.5 & 0 & 0.5 & 0 \\ -0.5 & 0 & 0 & 0.5 \end{bmatrix}$$

Example 1



 $X_{n \times p}$ - *n* independent realizations of the p-dimensional random vector $S = \frac{1}{n} X^T X$ - sample covariance matrix

 $X_{n \times p}$ - *n* independent realizations of the p-dimensional random vector $S = \frac{1}{n}X^TX$ - sample covariance matrix

 $ES = \Sigma$

 $X_{n \times p}$ - *n* independent realizations of the p-dimensional random vector $S = \frac{1}{n}X^TX$ - sample covariance matrix

 $ES = \Sigma$

$$\hat{\Omega}_1 = S^{-1}$$

 $X_{n \times p}$ - *n* independent realizations of the p-dimensional random vector $S = \frac{1}{n}X^TX$ - sample covariance matrix

$$ES = \Sigma$$

$$\hat{\Omega}_1 = S^{-1}$$

Gaussian cross-entropy function: $L(\Omega, X)C + \frac{n}{2}\log \det \Omega - \frac{n}{2}tr(S\Omega)$.

When S is invertible,
$$\hat{\Omega}_{MLE} = S^{-1}$$

When *S* is invertible,
$$\hat{\Omega}_{MLE} = S^{-1}$$

$$ES^{-1} = \frac{n}{n-p-1}\Omega$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

When *S* is invertible,
$$\hat{\Omega}_{MLE} = S^{-1}$$

$$ES^{-1} = \frac{n}{n-p-1}\Omega$$

S is not invertible when p > n.

When *S* is invertible,
$$\hat{\Omega}_{MLE} = S^{-1}$$

$$ES^{-1} = \frac{n}{n-p-1}\Omega$$

S is not invertible when p > n.

 $\hat{\Omega}_{MLE}$ is dense (inverse Wishart distribution)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

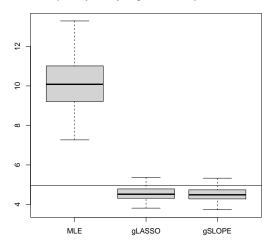
When *S* is invertible,
$$\hat{\Omega}_{MLE} = S^{-1}$$

$$ES^{-1} = \frac{n}{n-p-1}\Omega$$

S is not invertible when p > n.

 $\hat{\Omega}_{MLE}$ is dense (inverse Wishart distribution) For large $p, MSE = E ||\hat{\Omega} - \Omega||_{E}^{2}$ is large

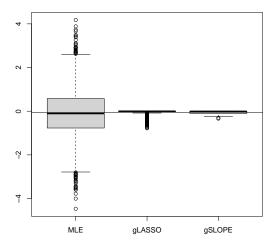
Simulation example (1)



Compund symmetry diagonal, n=200, p=100, rho=0.8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Simulation example (2)



Compound symmetry, off-diagonals

$$L(\Omega, X) = C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega).$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

$$\begin{split} L(\Omega, X) &= C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \\ \text{gLASSO:} \widehat{\Omega}_L &= \arg \max_{\Omega \in Sym^p_+} \left[\log \det \Omega - tr(S\Omega) - \lambda ||\Omega||_1 \right] \ , \\ &||\Omega||_1 = \sum_{i < j} |\omega_{ij}| \ . \end{split}$$

Example: n = 50, p = 30, Σ - block diagonal with 3 blocks of dimension 10×10 , correlation within blocks $\rho = 0.8$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\begin{split} L(\Omega, X) &= C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \\ \text{gLASSO:} \widehat{\Omega}_L &= \arg \max_{\Omega \in Sym^p_+} \left[\log \det \Omega - tr(S\Omega) - \lambda ||\Omega||_1 \right] , \\ &||\Omega||_1 = \sum_{i < j} |\omega_{ij}| . \end{split}$$

Example: n = 50, p = 30, Σ - block diagonal with 3 blocks of dimension 10×10 , correlation within blocks $\rho = 0.8$ $||\Omega - \hat{\Omega}_{MLE}||_F = 10800$

$$\begin{split} L(\Omega, X) &= C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \\ \text{gLASSO:} \widehat{\Omega}_L &= \arg \max_{\Omega \in Sym_+^{\rho}} [\log \det \Omega - tr(S\Omega) - \lambda ||\Omega||_1] \quad , \\ &||\Omega||_1 = \sum |\omega_{ij}| \quad . \end{split}$$

 $\overline{i < i}$

Example: n = 50, p = 30, Σ - block diagonal with 3 blocks of dimension 10×10 , correlation within blocks $\rho = 0.8$ $||\Omega - \hat{\Omega}_{MLE}||_F = 10800$ Banerjee and d'Aspremont (2008), FWER control for block diagonal matrices with standardized entries:

$$\lambda_{\alpha}^{Banerjee} = \frac{t_{n-2} \left(1 - \frac{\alpha}{2p^2}\right)}{\sqrt{n-2 + t_{n-2}^2 \left(1 - \frac{\alpha}{2p^2}\right)}} \quad , \tag{1}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

$$\begin{split} L(\Omega, X) &= C + \frac{n}{2} \log \det \Omega - \frac{n}{2} tr(S\Omega). \\ \text{gLASSO:} \widehat{\Omega}_L &= \arg \max_{\Omega \in Sym^p_+} \left[\log \det \Omega - tr(S\Omega) - \lambda ||\Omega||_1 \right] , \\ &||\Omega||_1 = \sum_{i < j} |\omega_{ij}| . \end{split}$$

Example: n = 50, p = 30, Σ - block diagonal with 3 blocks of dimension 10×10 , correlation within blocks $\rho = 0.8$ $||\Omega - \hat{\Omega}_{MLE}||_F = 10800$ Banerjee and d'Aspremont (2008), FWER control for block diagonal matrices with standardized entries:

$$\lambda_{\alpha}^{Banerjee} = \frac{t_{n-2} \left(1 - \frac{\alpha}{2p^2}\right)}{\sqrt{n - 2 + t_{n-2}^2 \left(1 - \frac{\alpha}{2p^2}\right)}} \quad , \tag{1}$$

Perfect graph discovery, $||\Omega - \hat{\Omega}_{gLASSO}||_F = 468$

Precision matrix depends on scaling factors: $Cov(aX_i, X_j) = aCov(X_i, X_j)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Precision matrix depends on scaling factors: $Cov(aX_i, X_i) = aCov(X_i, X_i)$

The sequence of models along the GLASSO paths depends on the scaling of individual variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Precision matrix depends on scaling factors: $Cov(aX_i, X_i) = aCov(X_i, X_i)$

The sequence of models along the GLASSO paths depends on the scaling of individual variables

Standard solution - standardize the variables to the unit variance, i.e. estimate the inverse of the correlation matrix and than rescale

Precision matrix depends on scaling factors: $Cov(aX_i, X_i) = aCov(X_i, X_i)$

The sequence of models along the GLASSO paths depends on the scaling of individual variables

Standard solution - standardize the variables to the unit variance, i.e. estimate the inverse of the correlation matrix and than rescale

More reasonable solution - penalize the partial correlation matrix instead of the precision

Dependence of scaling

Precision matrix depends on scaling factors: $Cov(aX_i, X_j) = aCov(X_i, X_j)$

The sequence of models along the GLASSO paths depends on the scaling of individual variables

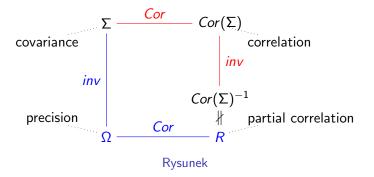
Standard solution - standardize the variables to the unit variance, i.e. estimate the inverse of the correlation matrix and than rescale

More reasonable solution - penalize the partial correlation matrix instead of the precision

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Partial correlation : $ho_{i,j} = -\frac{\Omega_{i,j}}{\sqrt{\Omega_{i,i}\Omega_{j,j}}} = -R_{i,j}$

Precision vs Partial correlation



・ロト・西ト・ヨト・ヨー シック

Partial correlation vs inverse of the correlation

Typically, partial correlation R has a different ordering of off-diagonal entries than the precision of the standardised data $Cor(\Sigma)^{-1}$.

$$\Sigma = \begin{bmatrix} 2 & -1 & -2 & 2 \\ -1 & 1 & 1 & -1 \\ -2 & 1 & 3 & -3 \\ 2 & -1 & -3 & 3.5 \end{bmatrix} \quad Cor(\Sigma)^{-1} = \begin{bmatrix} 4 & 1.414 & 2.449 & 0 \\ 1.414 & 2 & 0 & 0 \\ 2.449 & 0 & 9 & 6.48 \\ 0 & 0 & 6.48 & 7 \end{bmatrix}$$
$$\Omega = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & 0.5 & 0.408 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.408 & 0 & 1 & 0.816 \\ 0 & 0 & 0.816 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Partial correlation LASSO

A. Chojecki, I. Hejny, B. Kołodziejek, J. Wallin, MB J.S.Carter, D. Rossell, J. Q. Smith, SJS, 2023 We represent $\Omega = DRD$, where $D^2 = diag(\Omega)$, and define its estimator as

$$\hat{\Omega}_{
m pcg} = \hat{D}\hat{R}\hat{D},$$

where

$$(\hat{R}, \hat{D}) \in Argmax_{R,D} \{ \log \det(DRD) - SDRD - \lambda \|R\|_{1, \text{off}} - 2\alpha \log \det(DRD) - (2) \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

and $\lambda \geq {\rm 0}$ and $\alpha < {\rm 1}$ are tuning parameters.

Convexity issues

The objective function is non-concave and there might exist more than one global maxima

(ロ)、(型)、(E)、(E)、 E) の(()

Convexity issues

The objective function is non-concave and there might exist more than one global maxima

Let \hat{C} denote the sample correlation matrix.

Theorem

- (i) If $\|\hat{C} I_p\|_{\infty} \le (2(1-\alpha)p^3)^{-1/2}$, then for any $\lambda \ge 0$, *PCGLASSO* admits a unique local maximum.
- (ii) There exist λ₀ > 0 and α₀ > 0 such that, for every Ĉ, λ ∈ (0, λ₀) and α ∈ (-∞, α₀), PGLASSO admits a unique local maximum.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The function is biconcave, i.e. for fixed D it is concave as a function of R and vice versa

Algorithm

The function is biconcave, i.e. for fixed D it is concave as a function of R and vice versa

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We iteratively optimize with respect to D and R

Algorithm

- The function is biconcave, i.e. for fixed D it is concave as a function of R and vice versa
- We iteratively optimize with respect to D and R
- For fixed D we optimize R using an adaptation of the block coordinate descent method for GLASSO

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithm

- The function is biconcave, i.e. for fixed D it is concave as a function of R and vice versa
- We iteratively optimize with respect to D and R
- For fixed D we optimize R using an adaptation of the block coordinate descent method for GLASSO
- For fixed R we optimize D using a modified Newton-Raphson method with backtracking line search.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Asymptotic distribution

We minimize

$$-logdet(\Omega) + tr(\Omega S) + n^{-1/2}Pen(\Omega)$$

We want to compare penalization of the precision matrix $\boldsymbol{\Omega}$ and of the partial correlation matrix

$$R = g(\Omega) = Cor(\Omega) = d(\Omega)^{-1/2} \Omega d(\Omega)^{-1/2}$$
:

 $Pen(\Omega) = \begin{cases} f(\Omega) + h(\Omega) \dots \text{ precision penalization} \\ f(g(\Omega)) + h(\Omega) \dots \text{ partial correlation penalization} \end{cases}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $h(\Omega) = \alpha log(det(d(\Omega)))$ is a separate penalty on the diagonal of Ω .

Low dimensional asymptotics

Theorem

Assume x follows a centered elliptical distribution with $Cov(x) = \Sigma = \Omega_0^{-1}$. Then $\sqrt{n}(\widehat{\Omega}_n - \Omega_0)$ converges weakly and in pattern to the minimizer of $V : \mathbb{R}^{p^2} \to \mathbb{R}$;

$$\frac{1}{2}\operatorname{vec}(U)^{\mathsf{T}}\operatorname{Cvec}(U) - \operatorname{vec}(U)^{\mathsf{T}}W + \operatorname{Pen}'(\Omega_0; U), \qquad (3)$$

where $W \sim \mathcal{N}(0, \mathcal{C}_{ riangle})$,

$$C = \frac{1}{2} (\Omega_0^{-1} \otimes \Omega_0^{-1}),$$

$$C_{\triangle} = Cov(vec(x^T x))/4$$

and $Pen'(\theta_0; u)$ denotes the directional derivative of the penalty Pen at θ_0 in direction u.

Pattern recovery

Theorem Let $\Omega_0 = DRD$. The irrepresentability condition is

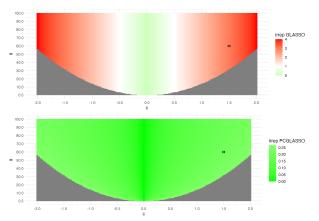
$$||\tilde{\Gamma}_{\mathcal{S}^{c}\mathcal{S}}(\tilde{\Gamma}_{\mathcal{S}\mathcal{S}})^{+} \textit{vec}(\textit{sign}(\textit{od}(R)))||_{\infty} < 1$$

where $\tilde{\Gamma} := M_R^+(R^{-1} \otimes R^{-1})$, $M_R = I - (1/2)P_d(I \otimes R + R \otimes I)$, P_d a projection satisfying $P_d \operatorname{vec}(U) = \operatorname{vec}(d(U))$ and M_R^+ the Moore-Penrose inverse. If the above condition is satisfied, then PCGLasso is model consistent in the sense

$$\lim_{n\to\infty}\mathbb{P}(sign(\hat{\Omega}_n)=sign(\Omega_0))>1-e^{c\gamma},$$

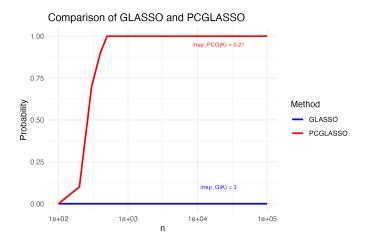
for some c > 0 and arbitrary $\gamma \ge 0$, where $\hat{\Omega}_n$ minimizes $-\log det(\Omega) + tr(\Omega S) + n^{-1/2} \gamma Pen(\Omega)$.

Irrepresentability condition (1)

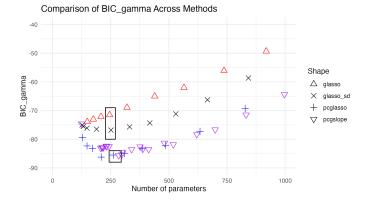


Rysunek: Heatmap representing the value of the IRR formula for the hub graphs such that K[1,1] = a; K[i,i] = 1; K[i,1] = K[1,i] = c and K[i,j] = 0; size p = 15. Green area marks the region where IR is satisfied, grey area marks the region where K is not positive semidefinite (namely, $a \le (p-1)c^2$).

Irrepresentability condition (2)

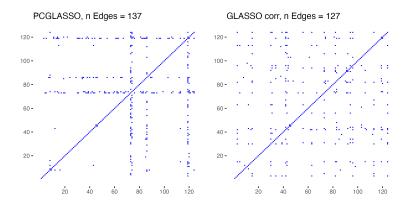


Analysis of gene expression data



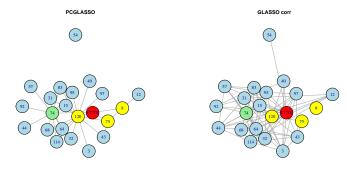
・ロト・日本・日本・日本・日本・日本

Analysis of gene expression data (2)



▲ロト▲圖ト▲画ト▲画ト 画 のみで

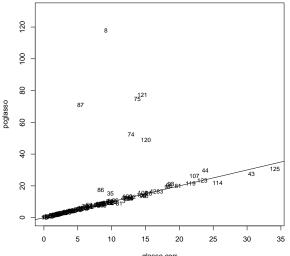
Analysis of gene expression data (3)



A D > A P > A D > A D >

Analysis of gene expression data(4)

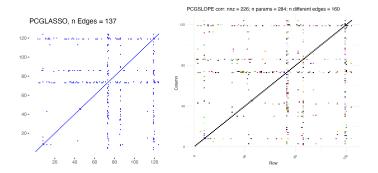
Diagonal entries



glasso corr

・ コ ト ・ 一 ト ・ ヨ ト ・ 3 э

Analysis of gene expression data (5)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで