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Covariance and Precision Matrices

(X1, . . . ,Xp) - p dimensional random vector

Σp×p - covariance matrix

Σi ,j = Cov(Xi ,Xj) = E (Xi − µi )(Xj − µj)

Ω = Σ−1 - precision matrix
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Motivation: Global Minimum Variance Portfolio

R = [R1 · · · RK ]′ - a random vector of returns

µ = [E[R1] · · · E[RK ]]′

Σ = E
[
(R − µ) (R − µ)′

]
.

w ∈ RK - portfolio weights

Var(w ′R) = w ′Σw

w⋆ = arg min
w∈RK

w ′Σw subject to w ′1K = 1,

w⋆ =
Σ−11K

1′KΣ−11K



Graphical Model

X = (X1, . . . ,Xp) - a random vector

Graph: G = (V ,E )
Vertices (V): indices (names) of components of X : V = {1, . . . , p}
Edges (E): (u, v) /∈ V ⇐⇒ Xu |= Xv |XV \{u,v}
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Gaussian Graphical Model

X = (X1, . . . ,Xp) ∼ N(0,Σ), Ω = Σ−1 - precision matrix

Xi |= Xj |XV \{u,v} ⇐⇒ Ωij = 0

Example: for j = 2, . . . , p Xj = X1 + εj , where
Var(X1) = Var(εj) = 2

for i ̸= j , Cov(Xi ,Xj) = Var(X1) = 2

for j ≥ 2, Var(Xj) = 4
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Hub

Σ =


2 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

 ,Ω =


2 −0.5 −0.5. −0.5

−0.5 0.5 0 0
−0.5 0 0.5 0
−0.5 0 0 0.5


Example 1

1

2

3

4



Method of moments

Xn×p - n independent realizations of the p-dimensional random
vector
S = 1

nX
TX - sample covariance matrix

ES = Σ

Ω̂1 = S−1

Gaussian cross-entropy function: L(Ω,X )C+
n

2
log det Ω−n

2
tr(SΩ).
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Large p scenario

When S is invertible, Ω̂MLE = S−1

ES−1 =
n

n − p − 1
Ω

S is not invertible when p > n.

Ω̂MLE is dense (inverse Wishart distribution)

For large p, MSE = E ||Ω̂ − Ω||2F is large
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Simulation example (1)

MLE gLASSO gSLOPE

4
6

8
10

12

Compund symmetry diagonal, n=200, p=100, rho=0.8



Simulation example (2)
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Compound symmetry, off−diagonals



Graphical LASSO, Friedman et al. (2008)

L(Ω,X ) = C +
n

2
log det Ω − n

2
tr(SΩ).

gLASSO:Ω̂L = arg maxΩ∈Symp
+

[log det Ω − tr(SΩ) − λ||Ω||1] ,

||Ω||1 =
∑
i<j

|ωij | .

Example:n = 50, p = 30, Σ - block diagonal with 3 blocks of
dimension 10 × 10, correlation within blocks ρ = 0.8
||Ω − Ω̂MLE ||F = 10800
Banerjee and d’Aspremont (2008), FWER control for block
diagonal matrices with standardized entries:

λBanerjee
α =

tn−2

(
1 − α

2p2

)
√

n − 2 + t2n−2

(
1 − α

2p2

) , (1)

Perfect graph discovery, ||Ω − Ω̂gLASSO ||F = 468
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Dependence of scaling

Precision matrix depends on scaling factors:
Cov(aXi ,Xj) = aCov(Xi ,Xj)

The sequence of models along the GLASSO paths depends on the
scaling of individual variables

Standard solution - standardize the variables to the unit variance,
i.e. estimate the inverse of the correlation matrix and than rescale

More reasonable solution - penalize the partial correlation matrix
instead of the precision

Partial correlation : ρi ,j = − Ωi,j√
Ωi,iΩj,j

= −Ri ,j
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Precision vs Partial correlation

Ω

Σ Cor(Σ)

R

Cor(Σ)−1
inv

Cor

inv

Cor
∦

covariance

precision partial correlation

correlation

Rysunek



Partial correlation vs inverse of the correlation

Typically, partial correlation R has a different ordering of
off-diagonal entries than the precision of the standardised data
Cor(Σ)−1.

Σ =


2 −1 −2 2
−1 1 1 −1
−2 1 3 −3
2 −1 −3 3.5

 Cor(Σ)−1 =


4 1.414 2.449 0

1.414 2 0 0
2.449 0 9 6.48

0 0 6.48 7



Ω =


2 1 1 0
1 2 0 0
1 0 3 2
0 0 2 2

 R =


1 0.5 0.408 0

0.5 1 0 0
0.408 0 1 0.816

0 0 0.816 1





Partial correlation LASSO

A. Chojecki, I. Hejny, B. Ko lodziejek, J. Wallin, MB

J.S.Carter, D. Rossell, J. Q. Smith, SJS, 2023

We represent Ω = DRD, where D2 = diag(Ω), and define its
estimator as

Ω̂pcg = D̂R̂D̂,

where

(R̂, D̂) ∈ ArgmaxR,D {log det(DRD) − SDRD − λ∥R∥1,off − 2α log det(D)}
(2)

and λ ≥ 0 and α < 1 are tuning parameters.



Convexity issues

The objective function is non-concave and there might exist more
than one global maxima

Let Ĉ denote the sample correlation matrix.

Theorem

(i) If ∥Ĉ − Ip∥∞ ≤ (2(1 − α)p3)−1/2, then for any λ ≥ 0,
PCGLASSO admits a unique local maximum.

(ii) There exist λ0 > 0 and α0 > 0 such that, for every Ĉ ,
λ ∈ (0, λ0) and α ∈ (−∞, α0), PGLASSO admits a unique
local maximum.
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Algorithm

The function is biconcave, i.e. for fixed D it is concave as a
function of R and vice versa

We iteratively optimize with respect to D and R

For fixed D we optimize R using an adaptation of the block
coordinate descent method for GLASSO

For fixed R we optimize D using a modified Newton-Raphson
method with backtracking line search.
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Asymptotic distribution

We minimize

−logdet(Ω) + tr(ΩS) + n−1/2Pen(Ω)

We want to compare penalization of the precision matrix Ω and of
the partial correlation matrix
R = g(Ω) = Cor(Ω) = d(Ω)−1/2Ωd(Ω)−1/2:

Pen(Ω) =

{
f (Ω) + h(Ω) . . . precision penalization

f (g(Ω)) + h(Ω) . . . partial correlation penalization ,

where h(Ω) = αlog(det(d(Ω))) is a seperate penalty on the
diagonal of Ω.



Low dimensional asymptotics

Theorem
Assume x follows a centered elliptical distribution with
Cov(x) = Σ = Ω−1

0 . Then
√
n(Ω̂n − Ω0) converges weakly and in

pattern to the minimizer of V : Rp2 → R;

1

2
vec(U)TCvec(U) − vec(U)TW + Pen′(Ω0;U), (3)

where W ∼ N (0,C△),

C =
1

2
(Ω−1

0 ⊗ Ω−1
0 ),

C△ = Cov(vec(xT x))/4

and Pen′(θ0; u) denotes the directional derivative of the penalty
Pen at θ0 in direction u.



Pattern recovery

Theorem
Let Ω0 = DRD. The irrepresentability condition is

||Γ̃ScS(Γ̃SS)+vec(sign(od(R)))||∞ < 1

where Γ̃ := M+
R (R−1 ⊗ R−1), MR = I − (1/2)Pd(I ⊗ R + R ⊗ I ),

Pd a projection satisfying Pdvec(U) = vec(d(U)) and M+
R the

Moore-Penrose inverse. If the above condition is satisfied, then
PCGLasso is model consistent in the sense

lim
n→∞

P(sign(Ω̂n) = sign(Ω0)) > 1 − ecγ ,

for some c > 0 and arbitrary γ ≥ 0, where Ω̂n minimizes
-logdet(Ω) + tr(ΩS) + n−1/2γPen(Ω).



Irrepresentability condition (1)

Rysunek: Heatmap representing the value of the IRR formula for the hub
graphs such that K [1, 1] = a;K [i , i ] = 1;K [i , 1] = K [1, i ] = c and
K [i , j ] = 0; size p = 15. Green area marks the region where IR is
satisfied, grey area marks the region where K is not positive semidefinite
(namely, a ≤ (p − 1)c2).



Irrepresentability condition (2)



Analysis of gene expression data



Analysis of gene expression data (2)



Analysis of gene expression data (3)
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Analysis of gene expression data(4)
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Analysis of gene expression data (5)


