
QDC: Quick
Density Clustering

of geo-located data

Katarzyna Kopczewska

Faculty of Economic Sciences

University of Warsaw, Poland

PRESENTATION OF THE NEW ALGORITHM

Problem to solve

For a given dataset, assign quickly
each point with one of the labels:
✓high-density,

✓medium-density

✓low-density

We want to
obtain something
like this

Motivation – WHY we need a new method?
• To avoid metodological problems

• we mostly deal with aggregated data to describe density of territory (e.g. persons /
km2) → this is not applicable to point data

• to avoid MAUP (Modifiable Areal Unit Problem) when aggregating data

• To answer new research questions
• to give the ‚label’ to data in terms of its relative location – adding information (another

feature) to the dataset
• to study better the issues of agglomeration, concentration, CBD effects, co-location

issues, especially in micro-geography studies

• For monitoring
• to know if local density structure changes immediately – e.g. to track crowd, traffic
• for policy insights – to understand human activity at individual (not aggregated) level

Toolbox for density clusters
1. DBSCAN / Density Peak Clustering
- points labelled as high-density and noise only (no
other levels)
- Poor control over the number of clusters and noise
ratio
- Very sensitive to parameters set by users

2. Gridded data
- labelling of grid cells (counting aggregated points) – no
more for points

3. Kernel Density Estimation (KDE)
- Continous values of density
- Very sensitive to parameters set by users

4. K-means for xy coordinates
- It outputs the catchment areas, not density clusters

5. QDC (Quick Density Clustering)
- Uses distance to kNN and fixed-radius NN
- Yields low, mid and high-density clusters

1 2

3

4

1

2

3

4

5

5

Existing metods fail also
in simulated designs

The design of QDC (Quick Density Clustering) (1)
• Intuition to follow the nature of density:

• Low-density points:
• Far from other points

• Only a few points around

• High-density points:
• Close to other points

• Many points around

QDC is based on two spatial variables:
- Total distance to k nearest neighbours (knn)
- Number of neighbours within a fixed radius

(frNN)

• New solution (Kopczewska, 2025) for dividing data by
density, e.g. into 3 density clusters (high, medium, low)

• Weakly-dependent on hyper-parameters

• Self-calibrating – no need to set the thresholds

The design of QDC (Quick Density Clustering) (2)
Those two spatial variables:

• they carry different information

• there is no linear correlation between them

• they are almost independent of parameters:
• number of k nearest neighbours (kNN) we use
• size of radius in which we count neighbours (frNN)

What we can do with two non-linearly correlated variables???

➔ To avoid scale effect one should standardise/normalise both variables.
➔ We can use k-means clustering to divide observations into k groups (clusters) based
on those two spatial variables – it is based on distance (dissimilarity measure)

QDC construction

X Y knndist1 frnn1 knndist1.scaled frnn1.scaled km.set1 outcome.set1

1 20.73643 52.42706 0.15232063 2 -0.3560706 -0.6624440 3 mid-density

2 21.11411 52.31913 0.10447334 41 -0.5306375 -0.4888737 3 mid-density

3 21.04562 52.14307 0.02639201 236 -0.8155109 0.3789779 3 mid-density

4 21.00613 52.19675 0.02936217 714 -0.8046746 2.5063270 2 high-density

5 20.77757 51.77048 0.33446133 3 0.3084551 -0.6579935 3 mid-density

6 20.67792 52.11957 0.10465465 29 -0.5299761 -0.5422800 3 mid-density

QDC algorithm is executed in the following steps:

1. Calculate for each point the number of nearest neighbours within a fixed radius and

normalise

2. Calculate for each point the total distances to k nearest neighbours and normalise

3. Perform k-means clustering on both variables together

4. Obtain the thresholds of the clusters to classify new points

The design of QDC (Quick Density Clustering) (3)

Relation between the two spatial variables Location of detected clusters (x=longitude, y=latitude)

High density

Medium density

Low density

(x) High total distance to knn (e.g.knn=10)
(y) Low number of neighbours around

(x) Low total distance to knn (e.g.knn=10)
(y) High number of neighbours around

x=total distance to k nearest neighboursy=
n

u
m

b
er

 o
f

n
e

ig
h

b
o

u
rs

w
it

h
in

 a
 f

ix
e

d
 r

ad
iu

s

QDC algorithmCLUSTERING

k=hyper-parameter, e.g.30

K=hyper-parameter, e.g. 3

r=hyper-parameter, e.g. 0.15

 spat.var1 ← ∑dist(knn=k)

 spat.var2 ← frnn(r)

spat.var1.s ← (spat.var1-mean(spat.var1))/sd(spat.var1)

spat.var2.s ← (spat.var2-mean(spat.var2))/sd(spat.var2)

data ← (spat.var1.s, spat.var1.s)

kmeans(data, K)

CLASSIFYING

t1←max(min(spat.var1|clust1), ….,

min(spat.var1|clustK))

t1←max(min(spat.var2|clust1), ….,

min(spat.var2|clustK))

low-density ←spat.var1>t1

high-density← spat.var2>t2

popul<-data.frame(x=X, y=Y) # dataset

knn.dist<-dbscan::kNNdist(popul[,1:2], 10, all =TRUE) # spatial variables based on xy

popul$knndist1<-apply(knn.dist,1,sum) # sum of distances to knn

agg.radius<-dbscan::frNN(as.matrix(popul[,1:2]), eps=0.05) # neighbours in radius

popul$frnn1<-unlist(lapply(agg.radius$id, length)) # count nn in fixed radius

popul$knndist1.scaled<-scale(popul$knndist1) # normalisation

popul$frnn1.scaled<-scale(popul$frnn1)

popul$km.set1<-as.factor(kmeans(popul[,5:6], 3)$cluster) # kmeans clustering

t1<-max(min(popul$knndist1.scaled[popul$km.set1==1]),

min(popul$knndist1.scaled[popul$km.set1==2]), min(popul$knndist1.scaled[popul$km.set1==3])) #

threshold, when knndist>t1 – it is low-density cluster

t2<-max(min(popul$frnn1.scaled[popul$km.set1==1]),min(popul$frnn1.scaled[popul$km.set1==2]),

min(popul$frnn1.scaled[popul$km.set1==3])) # threshold, when frnn(agg)>t2 – it is high-density

cluster

popul$outcome.set1<-ifelse(popul$knndist1.scaled>t1, "low-density",

ifelse(popul$frnn1.scaled>t2,"high-density", "mid-density")) # classifies points to clusters

ggplot(popul, aes(x=knndist1.scaled, y=frnn1.scaled, color=km.set1)) + geom_point() # xy plot

ggplot(popul, aes(x=x, y=y, color=km.set1)) + geom_point() # location of clusters

R Code to execute the whole algorithm

Rand Index for alternative scenarios of QDC parameters
Rand Index for

QDC clusters

knn=10

r=0.01

knn=10

0 r=0.01

knn=25

0 r=0.01

knn=10

r=0.1

knn=10

0 r=0.1

knn=25

0 r=0.1

knn=10 r=0.01 NA 0.880 0.934 0.806 0.787 0.744

knn=100 r=0.01 0.880 NA 0.897 0.822 0.833 0.791

knn=250 r=0.01 0.934 0.897 NA 0.781 0.798 0.762

knn=10 r=0.1 0.806 0.822 0.781 NA 0.953 0.912

knn=100 r=0.1 0.787 0.833 0.798 0.953 NA 0.919

knn=250 r=0.1 0.744 0.791 0.762 0.912 0.919 NA

𝑅𝐼 =
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑

a, b, c, d are the numbers of the possible situations for pairs of pairs of
points:
a – in partitioning 1 and 2 both points are in the same cluster [the same, the
same] – these are stable observations;
b - in partitioning 1 and 2 both points are in different clusters [different,
different] – these are also stable observations;
c - in partitioning 1 both points are in the same cluster, but in partitioning 2
they are in different clusters [the same, different] – these are “jumping”
observations;
d - in partitioning 1 both points are in different clusters, but in partitioning 2
they are in the same cluster [different, the same] – these are “jumping”
observations.

Density
of firms

Density
of people

Density of
firms

Density of
people

Analysis on grids

Features of algorithms to consider
Questions to asnwer QDC

What is the input to the algorithm? Geolocated point data

What is the result of the

algorithm?

Each point is classified into one of density clusters (high /

medium / low); one can control the number of clusters

What are the parameters?
Radius (to check a number of points within it) and k nearest

neighbours (to calculate the total distance)

How are the parameters set? Is

there any benchmarking?

Parameters are set arbitrarily, but due to normalisation their

absolute value is of little importance

Are the parameters sensitive to

sample size and/or subsampling?

No, the same parameters can be used for any subsample; in a

subsample, the distance to k nearest neighbours is usually

greater than in a full sample, but the change is for all units and

after normalisation it does not matter much

Is the result sensitive to the values

of the parameters?
No, the classification is very similar in all scenarios

Is the result sensitive to sample

size?
No, there is no relationship between sample size and result

Self-calibrating mechanism and de-calibration flags

Self-calibration
• By normalisation, we do not care

what values of parameters express
„dense”, „close”

• With any reasonable values of
parameters, results are stable – the
method is quite robust

• We do not set arbitrary the
thresholds as in DBSCAN

• We can use the same parameters in a
subsample and it still works (e.g. for
1/10 sample, the number of NN in
radius changes)

Streaming data (new data)
• For a new point we know its location and we

can get its neighbourhood – we can calculate
both spatial variables

• We need to normalise it – mostly we will use
mean and sd from the training

• What if parameters change – our model
decalibrates

• By using streaming parameters (Welford’s
online algorithm) we can check if our new
parameters are still similar to the baseline
parameters, if not we get a flag

ҧ𝑥𝑛 =
𝑛 − 1 ҧ𝑥𝑛−1 + 𝑥𝑛

𝑛
= ҧ𝑥𝑛−1 +

𝑥𝑛 − ҧ𝑥𝑛−1
𝑛

𝑠𝑛
2 =

𝑛 − 2

𝑛 − 1
𝑠𝑛−1
2 +

൫ ሻ𝑥𝑛 − ҧ𝑥𝑛−1
2

𝑛

Is this method OK?

The methods should fulfil some criteria:

a) work quickly (due to quick k-means implementations)

b) do not involve deep pre-studies to get parameters (best, when their
outcome weakly depends on parameters set)

c) can set the high/low-density benchmark autonomously or use reference
given by the user

d) are suitable for big data

e) can easily work with stream data

f) have the self-calibrating or at least self-noticing mechanism giving an alert if
the previously calibrated model stops being valid due to structural change in
new data. This kind of (semi)autonomous (self-service) method is desired by
users due to low computational cost and high analytical gain.

Thematic areas of point data

+ screen z www oup

So, what’s next?

• github.com/poktam/spatialWarsaw

• Functions used
in the book and
many more

• R package
almost ready

Thank you very much!

@Katarzyna Kopczewska
@SpatialWarsaw

@ kkopczewska@wne.uw.edu.pl

Dr hab. Katarzyna Kopczewska, prof.ucz.

Katedra Data Science / Department of Data Science

Wydział Nauk Ekonomicznych / Faculty of Economic Sciences

Uniwersytet Warszawski / University of Warsaw

mailto:kkopczewska@wne.uw.edu.pl

	Slajd 1: QDC: Quick Density Clustering of geo-located data
	Slajd 2: Problem to solve
	Slajd 3: Motivation – WHY we need a new method?
	Slajd 4: Toolbox for density clusters
	Slajd 5: Existing metods fail also in simulated designs
	Slajd 6: The design of QDC (Quick Density Clustering) (1)
	Slajd 7: The design of QDC (Quick Density Clustering) (2)
	Slajd 8: QDC construction
	Slajd 9: The design of QDC (Quick Density Clustering) (3)
	Slajd 10: QDC algorithm
	Slajd 11
	Slajd 12: Rand Index for alternative scenarios of QDC parameters
	Slajd 13
	Slajd 14
	Slajd 15: Features of algorithms to consider
	Slajd 16: Self-calibrating mechanism and de-calibration flags
	Slajd 17: Is this method OK?
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22: So, what’s next?
	Slajd 23: Thank you very much!

