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Formulation of the problem
This problem was considered e.g. in [1], [2], [7]-[9], [12]-[14].



Model-design approach based on distribution mixture
Notation

U = U1... ∪ Uh ∪ ... ∪ UH - population as domains sum;

dk = [yk ,xk , zk∗] - k -th observation of variable under study,
auxiliary variable vector: xk = [xk ,1...xk ,m], vector identifying
domains: zk∗ = [zk ,1...zk ,H ] is zero vector except one element
equal to 1; when k ∈ Uh, zk∗ = z(h)k∗ ;
k = 1, ...,N, h = 1, ..,H < N, 1 ≤ m < N;

Let distribution of [YkXk ] be mixture of continuous densities:

f (yk ,xk ) =
H∑

h=1

f (yk ,xk |Zk∗ = z(h)k∗ )ph, ph = P(Zk∗ = z(h)k∗ )



Model-design approach based on distribution mixture
Notation

f (yk ,xk , θ) =
H∑

h=1

phfh(yk ,xk , θh), k ∈ U

where: θ = [θ1...θh...θH ] and θh = [θh,1...θh,a] :

The marginal distribution of Xk :

g(xk ,Θx) =

∫
R

f (yk ,xk ,Θ)dyk =
H∑

h=1

phgh(xk , θx ,h), k ∈ U

where:
gh(xk , θx ,h) =

∫
R fh(yk ,xk , θh)dyk ,

θx = [θx ,1...θx ,H ], Θx = {θx ,p}.



Model-design approach based on distribution mixture
Sampling design

A sample s of size n ≤ N is selected from population U
according to a sampling design: P(s) ≥ 0, s ∈ S,∑

s∈S P(s) = 1 where S is sampling space;
Inclusion probabilities of the sampling design:
πk =

∑
{s:k∈s,s∈S} P(s), k = 1, ...,N.

s = U − s be the complement of s in U;
s =

⋃H
h=1 sh, where sh ⊆ Uh, nh is the size of sh,

n =
∑H

h=1 nh is size of s, 1 < nh ≤ Nh, h = 1, ...H.



Model-design approach based on distribution mixture
Estimated parameters

The main aim is to estimate:
µh = E(Yk |Zk∗ = z(h)k∗ ) - domain mean for k ∈ Uh,
ph, h = 1, ...,H - probabilities,
µ =

∑H
h=1 phµh, population mean



Maximum likelihood estimation
Likelihood function

When the sample is selected according to preassigned
inclusion probabilities, the pseudo-likelihood approach (see, [6],
[10], [12]) leads to the following log-likelihood function:

l(ds,xs) = l1(ds) + l2(xs), ds = {dk , k ∈ s}

where the complete and incomplete functions are:
l1(ds) =

∑H
h=1 ln(ph)

∑
k∈sh

1
πk

+
∑H

h=1
∑

k∈sh

ln(fh(yk ,xk ,θh))
πk

,

l2(xs) =
∑

k∈s
ln(g(xk ,Θx ))

1−πk
.



Maximum likelihood estimation
EM-algorithm

EM-algorithm leads (see [3]-[5]) to replacing l(ds,xs) with:

l(t)(ds,xs) = l1(ds) + l(t)2 (xs)

where t = 0,1,2, ... - iterations,

l(t)2 (xs) =
H∑

h=1

τ
(t)
h ln(ph) +

H∑
h=1

∑
k∈s

τ
(t)
h,k ln(gh(xk , θx ,h))

1 − πk
,

τ̂
(t)
h = τ̂h(Θ̂

(t)
x ) =

∑
k∈s

τ
(t)
h,k

1−πk
,

τ
(t)
h,k = τh(xk , Θ̂

(t)
x ) = phgh(xk ,θ̂

(t)
x )

g(xk ,Θ̂
(t)
x )

, g(...) =
∑H

h=1 phgh(...)

τ̂
(t)
h,k is the posterior probability that the k -element (k ∈ s)

belongs to the h-th domain.



Maximum likelihood estimation
EM-algorithm

EM-algorithm provides approximated parameters Θ̂(t+1) and:

p̂(t+1)
h =

N̂h + τ̂
(t)
h

N̂ + τ̂ (t)
, h = 1, ...,H.

where

N̂h =
∑
k∈sh

1
πk

, N̂ =
H∑

h=1

N̂h =
∑
k∈s

1
πk

, τ̂ (t) =
H∑

h=1

τ̂
(t)
h .

Statistics N̂ and τ̂ (t) are estimators of N.
Ñ(t)

h = Np̂(t)
h estimates the expected values of the domain size;

In the case simple random sample drawn without replacement:

p̂(t+1)
h =

1
2
(p̄h + τ̄h), p̄h =

nh

n
, τ̂

(t)
h =

1
N − n

∑
k∈s

τ
(t)
h,k .



Maximum likelihood estimation
Bivariate normal model N(µy,h, µx,h, σ

2
y,h, , σ

2
x,h, ρh), h = 1, ...,H

Regression type estimators of µy ,h:

ŷ (t+1)
h = ȳsh −

σxy ,sh

σ̂
2(t+1)
x ,h

(x̄sh − x̂ (t+1)
h ),

ỹ (t+1)
h = ȳsh −

σxy ,sh

σ2
x ,sh

(x̄sh − x̂ (t+1)
h ).

Ratio type estimator of µy ,h:

y̌ (t+1)
h = ȳsh

x̂ (t+1)
h
x̄sh

t = 0,1,2, ....



Maximum likelihood estimation
Bivariate normal model

Estimators based on the data observed in the sample s:

x̄sh =
1

N̂h

∑
k∈sh

xk

πk
, ȳsh =

1
N̂h

∑
k∈sh

yk

πk
, N̂h =

∑
k∈sh

1
πk

,

σ2
x ,sh

=
1

N̂h

∑
k∈sh

(xk − x̄sh)
2

πk
, σ2

y ,sh
=

1
N̂h

∑
k∈sh

(xk − ȳsh)
2

πk
,

σxy ,sh =
1

N̂h

∑
k∈sh

(xk − x̄sh)(yk − ȳsh)

πk
, .

In the case of the simple random sample πk = n
N for all k ∈ U.



Maximum likelihood estimation
Bivariate normal model

Estimators based on xk ∈ U − s:

x̂ (t+1)
h = w (t)x̄sh + (1 − w (t)

h )x̄ (t)
s,h,

x̄ (t)
s,h =

1

τ
(t)
h

∑
k∈s

xk
τ
(t)
h,k

1 − πk
, w (t) =

N̂h

N̂h + τ
(t)
h

, x̄ (0)
h = x̄sh ,

σ̂
2(t+1)
x ,h = w (t)

h σ2
x ,sh

+ (1 − w (t)
h )σ

2(t)
x ,s,h, σ̂

2(0)
x ,h = σ2

x ,sh
,

σ
2(t)
x ,s,h =

1

τ
(t)
h

∑
k∈s

(xk − x̄ (t)
s,h)

2

1 − πk
τ
(t)
h,k ,

In the case of the simple random sample πk = n
N for all k ∈ U.



Simulation analysis of the estimation accuracy
Description of the experiment

Simple random samples {sj , j = 1, ...,M} are
independently drawn without replacement from U,
each sj is partitioned among the domains in such a way
that sj = s1,j ∪ ... ∪ sh,j ∪ ... ∪ sH,j and
2 ≤ nh ≤ n − 2(H − 1), h = 1, ...,H.
relative efficiency coefficient:

e(tsh) =
mse(tsh)

v(ȳsh)
100%, mse(tsh) =

1
M

M∑
j=1

(tsh,j − ȳh)
2

v(ȳsh) =
1
M
∑M

j=1(ȳsh,j − ȳh)
2, ȳh = 1

Nh

∑M
j=1 yk ,i ,

the relative bias:

b(tsh) =
|̄tsh − ȳh|√
mse(tsh)

100%, t̄sh =
1
M

M∑
j=1

tsh,j , h = 1, ...,H.

We assume that M = 10000.



Simulation analysis of the estimation accuracy
Spread of data generated from normal distribution mixture

Nh = 500, ph = 1/3, h = 1,2,3;
N(8,4,1,1,0.5), N(14,11.2,1,1,0.8) and N(20,19,1,1,0.95).

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rysunek: Spread of the generated data.



Simulation analysis of the estimation accuracy
Table 1. Relative efficiency coefficients. Artificial data

tsh n: 15 45 75 150
1 94.6 88.9 86.2 86.2

ŷ (t)
h 2 73.3 57.2 52.4 48.2

3 64.2 44.5 35.9 29.5
1 286 202 131 98.9

ỹ (t)
h 2 115 76.7 58.0 43.3

3 599 405 159 40.6
1 241 205 135 97.4

y̌ (t)
h 2 107 76.0 57.4 47.8

3 569 406 158 40.7
1 101 33.3 31.9 21.3

p̂(t)
h 2 127 59.0 38.3 21.5

3 104 45.5 30.5 20.7
ŷ (t) 83.3 37.3 27.8 20.9
ỹ (t) 45.3 28.4 24.8 20.7
y̌ (t) 41.7 26.7 24.6 20.6

Source: Own calculations.



Simulation analysis of the estimation accuracy
Spread of logarithmized data on Swedish municipalities [9]

Observations of y - municipal taxation revenues in 1985 and x -
municipal employees in 1984 are divided by 30% and 70%
quantiles of 1984 real estate value. N1 = N3 = 86, N2 = 109.

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

Rysunek: Spread of the generated data.



Simulation analysis of the estimation accuracy of
population mean
The population of 281 Swedish municipal units.

n: 8 14 28
1 2 3 4

e(.)
ŷ (t) 85.1 58.4 46.2
ỹ (t) 30.0 24.9 21.8
y̌ (t) 49.0 43.0 43.9

b(.)
ŷ (t) 8.0 7.9 5.2
ỹ (t) 1.7 1.0 3.3
y̌ (t) 31.6 18.0 9.4

Source: Own calculations.



Simulation analysis of the estimation accuracy
Data on current and starting salaries. Sourse: the SPSS dataset.

N1 = 390 observations from officials and N2 = 84 observations
from managers.

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rysunek: Spread of the generated data.



Simulation analysis of the estimation accuracy
Data on current and starting salaries. Sourse: the SPSS dataset.

Table 3. Estimation accuracy of the population mean.
Population of employees.
n: 15 24 48
1 2 3 4

e(.)
ŷ (t) 85.7 86.6 114
ỹ (t) 122 38.2 60.9
y̌ (t) 41.3 36.0 32.3

b(.)
ŷ (t) 47.0 51.7 78.9
ỹ (t) 50.9 15.1 4.0
y̌ (t) 20.0 10.3 10.5

Source: Own calculations.



Conclusions

To estimate domain means in a finite population, the
model-design approach was considered;
The problem was considered as the estimation of the
mean components of a mixture of probability distributions.
In the case of a mixture of normal distributions, regression
and ratio type estimators were derived.
Example simulation analyses of the estimation accuracy
showed that the proposed estimators of population means
were more accurate than the simple sample mean. This
was not always the case for the estimation of domain
means.
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