For 5th Congress of Polish Statistics, Warsaw, Poland; 1–3 July 2025.

COMPARING INSTITUTIONAL PERFORMANCE

Nicholas T. Longford

SNTL Statistics Research and Consulting, London, UK * Kolegium Analiz Ekonomicznych, SGH, Warszawa Mohn Centre for Children's Health and Wellbeing, Imperial College London

sntlnick@sntl.co.uk, nlongf@sgh.waw.pl

Keywords:

Administrative database; audit; causal inference; decision theory; league table; report card and dashboard.

Introduction

Institutions — hospitals, schools, local authorities, police units

Data sources — routinely collected data for accounting

Performance — outcome measures

— indicators of processes and outcomes

Comparisons — against set standards, best–worst (your neighbours), against last year, league tables

Annual **audit reports**; report cards

— involving all stakeholders and the general public

Institutions' responses:

action plans, explanations, proposals for changes

Statistical methods

Afinity to small-area estimation small areas (households/districts) — institutions (clients/hospitals)
Comparison of means and proportions random coefficient models
causal inference — 'What if ...' (counterfactual)
decision theory — ... consequences of inferential errors
methods for constructing league tables

> Emphasis on graphical presentation dissemination of statistical principles (uncertainty/chance) incorporation of perspectives, value judgements and remits

The setting

Institutions j = 1, ..., m; their clients $i = 1, ..., n_j$ outputs or outcomes y_{ij} defined on an ordinal scale (or binary) sample means \bar{y}_j — unbiased estimators of means/proportions μ_j

Q. Which institutions

- satisfy a standard $\mu_j > S$; fail to satisfy this standard - are as good as the best; are as poor as the worst - are outliers

The perspective:

- more liberal with praise
- higher statistical standard for pointing out deficiencies

League tables

The rank of institution j:

$$r(\mu_j \mid \boldsymbol{\mu}) = 1 + \sum_{h \neq j} I(\mu_j < \mu_h) \qquad (I = 0/1)$$

Estimate each summand by (Bayes/posterior) $P(\mu_j < \mu_h | \hat{\mu})$ Standard error — Laird and Louis (1987)

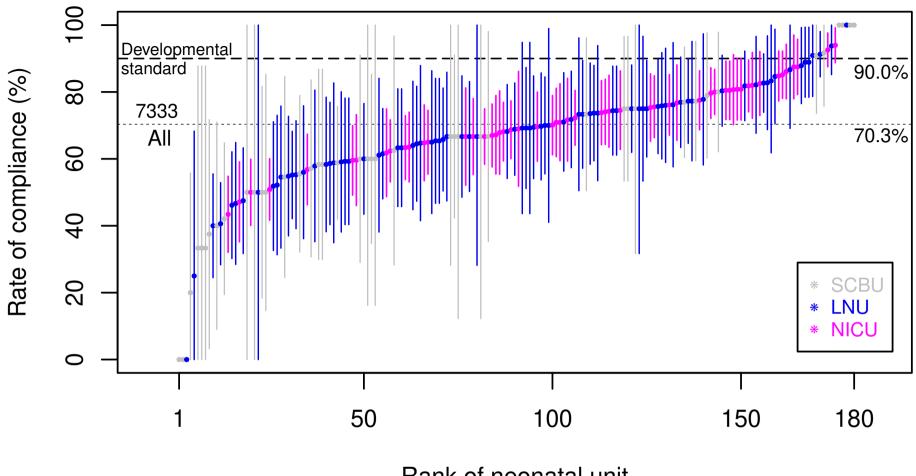
Plausible ranks — \sim confidence intervals for the (integer) ranks Adaptations of winner relegation, and similar labels

Which institution should I go to when I need a service?
Uniform standards — there should be no postcode lottery.
Good service is a common good — a concern for all public

Application of causal inference

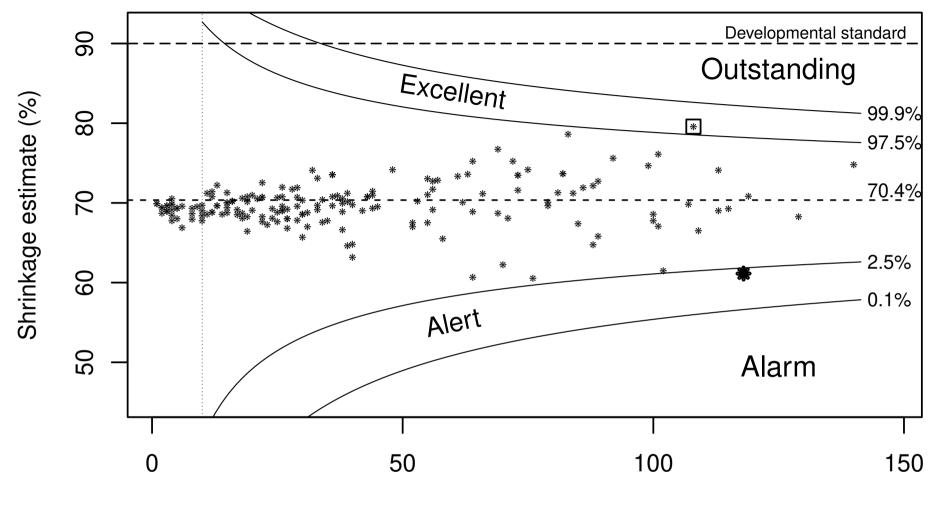
Potential outcomes framework: Every client has a potential outcome for each institution Define a synthetic set of clients — a *template* How would each institution perform on this template? fair comparisons How would institution A fare if it had clients from institution B? relevant comparison League tables: Compare A with B; compare B with A (home & away) — score these comparisons

A *league table* based on the scores


Making decisions

A decision has consequences — win/loss minimise the expected (posterior) loss

The loss matrix (example)


			Verdict	
		Smaller	\sim Equal	Larger
	Smaller	0	2	5
Truth:	\sim Equal	1	0	2
	Larger	3	1	0

— combined with *sensitivity analysis*

Rank of neonatal unit

National Neonatal Audit Programme (NNAP) 2020.
Timely measurement of temperature upon admission
— (hospital) unit-level analysis. Caterpillar plot.

Caseload (babies) – 178 units

NNAP 2020. Timely measurement of temperature upon admission — (hospital) unit-level analysis. Funnel plot.

CONQUEST

ANS	
MAG ——	
тмр 🛑	
CON	•
ROP	•
BFD 📃 🖝	
BFE	•
FLW	
NST	
BPD	

ROYAL SURREY COUNTY

TMP ------

-

-

ANS _____

BFD

TUNBRIDGE WELLS

- -

....

-

ANS _____

_

MAG —

CON -----

BFE

FLW —

NST -

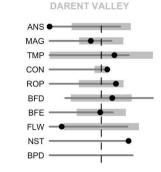
BPD -

MAG ------

TMP -----

CON -

ROP -


BFD

BFE

NST -

FLW •

BPD -----

WORTHING

-

_

ANS ------

BFD •

MAG —

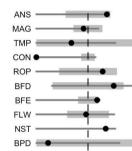
CON -

BFE -

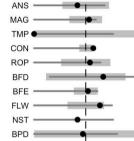
FLW -

NST -

ROP -----


PRINCESS ROYAL

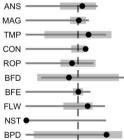
ANS -----MAG — – – – – – CON ----------ROP -----BFD _____ BFE • FLW -NST -BPD -

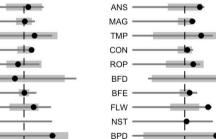

ANS -----MAG • _____ CON ------ROP -BFD _____ BFE -FLW NST -

BPD -

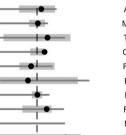
EAST SURREY

FRIMLEY PARK




.

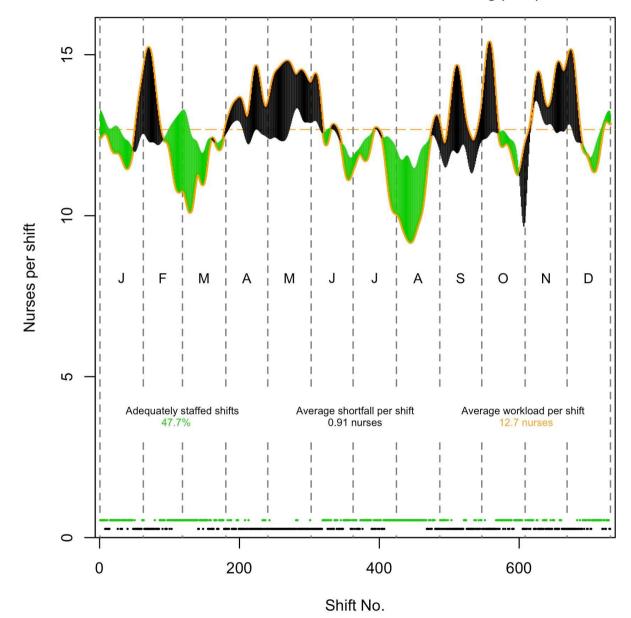
_


ROYAL SUSSEX COUNTY

ST PETER'S

BPD -**MEDWAY MARITIME** ANS _____

MAG ------TMP — • • CON -÷. ROP ---------BFD -BFE -


FLW -NST -----BPD -

WILLIAM HARVEY

ANS	•	ANS	Ste
MAG	•	MAG	Ma
TMP		TMP	Ter
CON	i •	CON	Co
ROP		ROP	RO
BFD		BFD	BM
BFE	_	BFE	Ear
FLW	_	FLW	2-у
NST	· · · · · · · · · · · · · · · · · · ·	NST	Nu
BPD	•	BPD	BP
	5		

		Legend	%
	ANS	Steroids	93.3
	MAG	Magnesium	87.7
	TMP	Temperature	70.4
	CON	Consultation	98.4
	ROP	ROP screening	96.3
_	BFD	BM feeding at D	59.3
	BFE	Early BM feeding	81.6
	FLW	2-yr follow-up	67.4
	NST	Nurse staffing	71.8
	BPD	BPD/death (trt effect)	2.5

2. ELIZABETH THE QUEEN MOTHEF

BRADFORD ROYAL INFIRMARY - Nurse staffing (2019)

NNAP 2020. Adequacy of nurse staffing.

References

Aitkin, M., and Longford, N.T. (1986). Statistical modelling of school effectiveness studies *Journal of the Royal Statistical Society* Series A **149**, 1–43.

Imbens, G.W., and Rubin, D.B. (2015). Causal Inference for Statistics, Social and Biomedical Sciences. An Introduction. Cambridge University Press, New York.

Laird, N.M., and Louis, T.A. (1987). Empirical Bayes ranking methods. *Journal of Educational Statistics* 14, 29–46.

Longford, N.T. (2020). Performance assessment as an application of causal inference. Journal of the Royal Statistical Society Series A **183**, 1363–1385.

Longford, N.T. (2021). *Statistics for Making Decisions*. Chapman and Hall/CRC, New York.

Longford, N.T. (2025a). Statistical balancing as an unconstrained optimisation problem. Australian and New Zealand Journal of Statistics **67**; to appear.

Longford, N.T. (2025b). Small-area estimation — a confusion of paradigms. Submitted.

Rosenbaum, P.R. (2020). *Design of Observational Studies*. 2nd ed. Springer-Verlag, New York.

Royal College of Paediatrics and Child Health (2024). National Neonatal Audit Programme — Summary report on 2023 data. RCPCH, London, UK.

Rubin, D.B. (2008). For objective causal inference, design trumps analysis. Annals of Applied Statistics **3**, 808–840.

Silber, J.H., Rosenbaum, P.R., Ross, R.N., Ludwig, J.M., Wang, W., Niknam, B.A., Mukherjee, N., Saynisch, P.A., Even-Shoshan, O., Kelz, R.R. and Fleisher, L.A. (2014). Template matching for auditing hospital cost and quality. *Health Services Research* **49**, 1446–1474.

Spiegelhalter, D.J. (2005). Funnel plots for comparing institutional performance. *Statistics in Medicine* 24, 1185–1202.

THANK YOU

DZIĘKUJĘ BARDZO