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Lifetime models (LTMs) are categorized according to the shapes of their HRFs.
Special attention is paid to LTMs of “flat-bottomed” HRFs that are commonly
named bathtub HRFs.
Unfortunately, over time, this name has been used to describe any HRF having
a minimum but evidently not being flat-bottomed. The flat-bottomed bathtub
hazard rate is specific to a non-homogeneous population. This population consists
of subpopulations of “weak” and “strong” items.
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LTMs may fall into monolithic or hybrid categories. The most representative mono-
lithic LTMs seem to be the Weibull (W), Gamma (G) and Gamma Weibull (GW).
Their failure density functions (FDFs) are
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where a > 0 is the scale parameter, b, c > 0 are the shape parameters, τ ≥ 0 is
the failure free time parameter and SF is the step function.

The (3) is more flexible than both (1) and (2) owing to the second shape parameter,
namely c . However, none of LTMs in question is sufficiently flexible to be applicable
to non-homogeneous populations. It is because they cannot be bimodal.
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The prime example of hybrid LTM is the compound Weibull (CW) proposed by
Kao (1959). Its FDF is given by

fCW (t) = ω
b1
a1

(
t
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exp
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t
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+
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exp
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. (4)

where a1, a2, b1, b2 > 0; τ ≥ 0;ω ∈ (0, 1).

As mentioned above, monolithic LTMs are unimodal. In contrast, hybrid LTMs
may be bimodal. Struck by the superiority of (4) over (1), (2), (3) one must not
overlook the fact that (4) has twice as many parameters than (3).
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Let us consider the results of the following simple, but very instructive, Monte
Carlo experiment. A set of input data that comprises one hundred samples each
of 30 items, was drawn from the exponential population. The population scale
parameter was set equal to one. Then (1), (2), (3) LTMs were sequentially fitted
to the data set. Parameters were estimated with the ML Method. Table shows
standard deviations of scale parameter estimates.

The (3) LTM produced scale parameter estimates of standard deviation more than
five times greater than the (1) LTM did. The explanation is simple. Saying freely,
“underfeeding” of the scale parameter took place because the shape parameters
have “eaten” most of the input data for their estimation purposes.

Piotr Sulewski, Antoni Drapella Weibull Distribution with Linear Shape Function



6/34

Introduction
A review of modified Weibull distributions

Properties of Weibull distribution with shape function
Estimation methods and information criteria

Applications
Concluding remarks

Let us consider the results of the following simple, but very instructive, Monte
Carlo experiment. A set of input data that comprises one hundred samples each
of 30 items, was drawn from the exponential population. The population scale
parameter was set equal to one. Then (1), (2), (3) LTMs were sequentially fitted
to the data set. Parameters were estimated with the ML Method. Table shows
standard deviations of scale parameter estimates.

The (3) LTM produced scale parameter estimates of standard deviation more than
five times greater than the (1) LTM did. The explanation is simple. Saying freely,
“underfeeding” of the scale parameter took place because the shape parameters
have “eaten” most of the input data for their estimation purposes.

Piotr Sulewski, Antoni Drapella Weibull Distribution with Linear Shape Function



7/34

Introduction
A review of modified Weibull distributions

Properties of Weibull distribution with shape function
Estimation methods and information criteria

Applications
Concluding remarks

No one questions the need for LTM flexibility. But do we need to use LTM defined
by as many as 8 parameters. The LTM below, called Kumaraswamy transmuted
exponentiated additive Weibull (KTEAW) (Nofal et al. 2016), is defined using
cumulative failure function as

FKTEAW (t) = 1−

{
1−

[
1− exp

(
−ctd − atb

)]eg
[1+ f − f (1− exp (−ctd − atb))e ]

−g

}h

, (5)

where (t > 0; a, c , d , e, f , g , h > 0; b > 1) .

In general, there are currently two techniques to increase flexibility of LTM: In the
formula of the failure density function, there are embed more parameters or the
same parameter are embedded in more than one place. The Weibull distribution
turned out to be a little more flexible than the Gamma distribution in Monte Carlo
experiments.
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The shape parameter can be called static in a sense that it shapes the LTM iden-
tically at each time point. In this paper, we will be able to shape LTM dynamically
owing to the following modification: we replace the shape parameter with the shape
function. The subject of modification, of course, will be the Weibull LTM further
named the Weibull distribution with shape function (WDSF). The CFF and FDF
take forms:

F (t) = 1− exp

[
−
( t
a

)w(t)
]
, (6)

f (t) =
w (t)

a
·
( t
a

)w(t)−1
· e−(
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+ w ′(t) · ln
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a

)
·
( t
a

)w(t)

· e−(
t
a)

w(t)

. (7)

The above FDF is a sum of two components. This is a unique property of the
LTM in question. Although born as a monolithic LTM the WDSF turns out to be
hybrid-like LTM. Please note that WDSF is free of the fraction parameter ω, which
is a data guzzler in (4). We consider the simplest version of WDSF that involves
a linear shape function.
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The main goal of our work is to complement the literature on the theory of reliability
models by introducing a new distribution with a linear shape function, which is a
modification of the Weibull LTM.

The first additional goal of our paper is to define an estimation method that mea-
sures the absolute values of the differences between the empirical and theoretical
reliability functions (RF).
The second is to propose an information criterion that is an alternative to the
Akaike Information Criterion (AIC).
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Generalized Weibull distributions can be constructed in many ways. The first and,
in our opinion, the most important way is to define distributions with the Weibull
distribution as their special case (including a mixture of two or more Weibull
variables). Other ways are i.e.: adding a constant to the hazard rate of the Weibull
model or transformations (linear, inverse or log) of the Weibull random variable.

By reviewing the statistical literature, we found 160 generalized Weibull distribu-
tions with 2 – 8 parameters. Among them, four distributions have a domain dif-
ferent from t > 0. There are: reflected Weibull distribution (Cohen, 1973) defined
for t < 0 as well as the Log-Weibull (Gumbel, 1958); (Almalki, 2014), modified
odd Weibull Normal (Chesneau˙2020) and extended odd Weibull normal (Alizadeh,
2018) distributions defined for t ∈ R .
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In the rest of the Section, we will focus on such generalized Weibull distributions,
for which the Swedish research’s distribution is their special case. In this case, the
large family of generalized Weibull distributions reduces to 69 distributions with
3–8 parameters, named by the authors as modified Weibull distributions.

Modified Weibull distributions are divided into six groups, according to the number
of their parameters.
The group I includes 18 models with three parameters.
The group II includes 16 models with four parameters.
The group III includes 27 models with five parameters.
The group IV includes 6 models with six parameters.
Kumaraswamy transmuted exponentiated modified Weibull (KTEMW) (AlBabtain,
2017) with 54 special cases forms group V (seven parameters)
Kumaraswamy transmuted exponentiated additive Weibull (KTEAW) (Nofal, 2016)
with 79 special cases (including KTEMW) forms group VI (eight parameters).
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Pseudo-bimodal lifetime models with the bathtub hazard rate function are 22.
Bimodal lifetime models with bathtub hazard rate function are:
1 McDonald Weibull (5)
2 exponentiated additive Weibull (5)
3 McDonald modified Weibull (7)
4 McDonald extended Weibull (7)
5 McDonald generalized Power Weibull (7)
6 Kumaraswamy transmuted exponentiated modified Weibull (8)
7 Kumaraswamy transmuted exponentiated additive Weibull (6)
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Definition 1. Let w (t) be a linear shape function w (t; b, c) = b + ct then
the CFF of the Weibull distribution with linear shape function in the first version
(WDSFI ) is defined as

F I (t;ϑ) = 1− exp

[
−
( t
a

)b+ct
]

(t > 0) , (8)

where ϑ = (a, b, c), a > 0 is the scale parameter, b > 0, c ≥ 0 are the shape pa-
rameters and b

ac
≥ − t

a

[
1+ ln

(
t
a

)]
. If c = 0 then we get the Weibull distribution.

Definition 2. Let w (t) be a linear shape function given by w (t; b, c , τ) = b +
c(t − τ) SF (t − τ) then the CFF of the Weibull distribution with linear shape
function in the second version (WDSFII ) has the form

F II (t;θ) = 1− exp

[
−
( t
a

)b+c(t−τ)SF (t−τ)
]
, (9)

where θ = (a, b, c , τ), τ ≥ 0 is the failure free time parameter, SF is the step
function and b−τ

ac
≥ − t

a

[
1+ ln

(
t
a

)]
. If τ = 0 then we get the first version of our

proposal.
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Theorem 1. The RFs of the WDSFI and WDSFII are defined, respectively, as

R I (t;ϑ) = exp

[
−
( t
a

)b+ct
]
, (10)

R II (t;θ) = exp
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−
( t
a

)b+c(t−τ)SF (t−τ)
]
. (11)

Theorem 2. The FDFs of the WDSFI and WDSFII are respectively given by

f I (t;ϑ) = exp

[
−
( t
a

)b+ct
]( t

a

)b+ct−1 [b + ct

a
+

tc

a
ln
( t
a

)]
, (12)

f II (t;θ) = exp
[
−u (t;θ)

t

a

]
u (t;θ)

[
b + c (t − τ) SF (t − τ)

a
+

ctSF (t − τ)

a
ln
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a

)]
,

(13)
where u (t;θ) =

(
t
a

)b+c(t−τ)SF (t−τ)−1
.
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Figure 1 shows the RF of the WDSFI and WDSFII . Pseudo-bimodality or bimodality
is visible here.
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Figure 2 shows the FDF of the WDSFI and WDSFII . We see the pseudo-bimodality
(on the left) and bimodality (on the right).
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Theorem 3. The HRFs of the WDSFI and WDSFII have respectively form

hI (t;ϑ) =
( t
a

)b+ct
[
b + ct

t
+ cln

( t
a

)]
, (14)

hII (t;θ) =

[
b + c (t − τ) SF (t − τ)

t
+ cSF (t − τ) ln

( t
a

)]( t
a

)b+c(t−τ)SF (t−τ)

.

(15)

Figure 3 shows the bathtub HRF of the WDSFI and WDSFII . The curves flatten
as c decreases.
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a

)b+ct
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b + ct

t
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a

)]
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hII (t;θ) =

[
b + c (t − τ) SF (t − τ)

t
+ cSF (t − τ) ln
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a

)]( t
a
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.
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Theorem 4. The HRAFs of the WDSFI and WDSFII are respectively defined as
(Barlow and Proschan 1996)

haI (t;ϑ) =
1
t

( t
a

)b+ct

, (16)

haII (t;θ) =
1
t

( t
a

)b+c(t−τ)SF (t−τ)

. (17)

Figure 4 shows the bathtub HRAF of the WDSFI and WDSFII . HRAF curves are
flatter than HRF curves.
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Theorem 5. Let 0 < p < 1. The Qs qI
p and q

II
p of the WDSF

I and WDSFII are
respectively solutions of the equations(

qI
p

a

)b+cqIp

+ ln (1− p) = 0, (18)

(
qII
p

a

)b+c(qIIp −τ)SF(qIIp −τ)

+ ln (1− p) = 0. (19)
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Theorem 6. Let R ∼ Unif (0, 1), T I and T II follow the WDSFI and WDSFII ,
respectively. We can obtain the T I and T II in two ways.
The first way. The T I and T II are respectively solutions of the equations(

T I

a

)b+cT I

+ ln (1− R) = 0, (20)

(
T II

a

)b+c(T II−τ)SF(T II−τ)
+ ln (1− R) = 0. (21)

The second way. The algorithm for obtaining the T I and T II is as follows:
1 Let ε = 10−10, k = 0, T I

0 = 0, T II
0 = 0.

2 Let k = k + 1
3 T I

k+1 = a [−ln (R)][b+cT I
k]

−1

, T II
k+1 = a [−ln (R)][b+cSF(T II

k+1−τ)(T II
k −τ)]

−1

.
4 If

∣∣T I
k+1 − T I

k

∣∣ ≥ ε,
∣∣T II

k+1 − T II
k

∣∣ ≥ ε then go to step 2.
5 Return T I = T I

k+1, T
II = T II

k+1.
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Estimation methods
Information criteria

Looking through the literature in search of distributions that are modifications of
the Weibull distribution, we find that the most dominant method of parameter es-
timation is the maximum likelihood (ML) method. However, the question remains
whether this choice is right. The younger the paper, the more often the parame-
ters are estimated using other methods, e.g. the ordinary least-squares (LS) and
weighted least-squares (WLS) ones, see e.g. (Afify, 2020); (Nassar, 2020); (Al-
mongy, 2021); (Almetwally, 2022); (Shama, 2023).

Let ϑ = (a, b, c) , θ = (a, b, c , τ) be parameter vectors and t∗1 , t∗2 , ..., t∗n be
a random sample of size n from the WDSFI and WDSFII . To estimate unknown
values of parameters, we use estimation methods such as the ML, LS, WLS and
least absolute values (LAW). The LAW, which is the first additional goal of the
work, measures the absolute values of the differences between the empirical and
theoretical RFs.
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Let Re (i) = 1 − i
n+1 is the empirical RF. To obtain the LAW estimates of the

WDSFI and WDSFII parameters, we minimize the following objective functions,
respectively

LAW I =
n∑

i=1

∣∣Re (i)− R I (t;ϑ)
∣∣ = n∑

i=1

∣∣∣∣∣ i − n − 1
n + 1

+ exp

[
−
(
t∗i
a

)b+ct∗i
]∣∣∣∣∣, (22)

LAW II =
n∑

i=1

∣∣Re (i)− R II (t;θ)
∣∣ = n∑

i=1

∣∣∣∣∣ i − n − 1
n + 1

+ exp

[
−
(
t∗i
a

)b+c(t∗i −τ)S
F
(t∗i −τ)

]∣∣∣∣∣.
(23)
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Estimation methods
Information criteria

Simulation study was performed with 103 samples with a size of 50, 100, 200. The
samples were drawn from the WDSFII with θ = (1, 1, c , 0), where c=(1, 2, 3). To
obtain highly accurate parameter estimates, the optimization procedure was run
102 times with random initial values of Unif (0.75, 1.25) for a, b, c and Unif (0, 0.25)
for τ .

We observe that as the sample size increases, the estimates approach the true
values, which means that the estimates are consistent. Biases and RMSE values
are the lowest for â. The ML method is not suitable for estimating scale parameters.
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Information criteria

Let δ be the parameter vectors of the analyzed LTMs and t1, ..., t∗n be a sample
of real data of size n.
The first three information criteria (IC) for the ML method are Akaike IC (AIC),
Bayesian IC (BIC), and Hannan-Quinn IC (HQIC) defined as, respectively

AIC = −2l + 2p,BIC = −2l + pln (n) , HQIC = −2l + 2pln(ln(n)) (24)

where l is the log-likelihood function, n is the sample size and p is the number of
model parameter.
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The fourth IC is a Relative Reliability Criterion (RRC), which is the second addi-
tional goal of the work. The RRC is defined as

RRC =
n∑

i=1

∣∣∣∣∣∣
R
(
t∗(i)

)
− Re (i)

Re (i)

∣∣∣∣∣∣ =
n∑

i=1

∣∣∣∣∣∣
R
(
t∗(i)

)
Re (i)

− 1

∣∣∣∣∣∣, (25)

where R
(
t∗(i)

)
and Re (i) are the theoretical and empirical reliability functions of

the analyzed model, respectively. The smaller the RRC values, the better the fit
of the model to the data.

The advantage of this measure is that it can be applied to any method of estimating
model parameters. Its disadvantage is that the proposed measure does not take
into account the number of model parameters, such as AIC or other similar criteria.
However, the authors’ aim is to demonstrate that increasing the number of model
parameters does not necessarily improve it, causing a decrease in the RRC value.
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Failure times of devices
500 MW generators
Failure car

In this section, we illustrate the importance of the WDSFI and WDSFII distributions
using three real life data sets. The new models are compared with the compound
Weibull (CW) model using visual techniques and numerical measures.

For the ML method, the AIC, BIC, HQIC criteria and the Kolmogorov-Smirnov
(KS) statistic are calculated, while for the remaining methods, the LS, WLS, LAW,
RRC objective functions and KS statistic are calculated.
All calculations for comparison were performed in R, Mathcad and Microsoft Excel
(Solver add-in). To avoid local maxima (ML method) and minima (OLS, WLS
and LAW methods), the optimization procedure was run 103 times with random
starting model parameter values that are widely scattered in the parameter space.
The final parameter estimates were better for maximization of the ML objective
function or minimization of the LS, WLS, and LAW objective functions.
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As the first real dataset, 50 failure times of devices (Aarset, 1987); (LaiXie, 2006)
is used.
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500 MW generators
Failure car

As the second real dataset, 36 times to the first failure of 500 MW generators
collected over a 6-year period (Dhillon, 1981); (LaiXie, 2006) is used.
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Failure times of devices
500 MW generators
Failure car

As the third real dataset, failure car time data collected during unit testing (Xie,1996);
(LaiXie, 2006) is used.
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This article presents a three- and four-parameter flexible modified Weibull LTM
called the Weibull distribution with a linear shape function. An innovative idea is
to replace the Weibull shape parameter with a shape function.

An estimation method based on theoretical and empirical reliability functions is
proposed and the information criterion is defined.
An extensive literature review was performed, considering the modalities and shapes
of the risk rate function.
The literature review showed that the ML method, as mentioned earlier, dominates
in simulation studies and real data examples. The younger the work, the more often
in simulation studies the parameters are estimated using other methods.
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With information criteria using the log-likelihood function, the number of model
parameters and sample sizes, the ML method dominates in real data examples.

This paper shows that even a three-parameter distribution can compete with LTM
with twice as many parameters in data modeling.
The proposed Relative Reliability Criterion certainly helps to compare models when
parameters are estimated by any method, but it does not consider the number of
parameters (see AIC) and the sample size (see BIC, HQIC). It would be interesting
to change that.
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