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X1, . . . , Xn i.i.d. N(µ1, σ1) and Y1, . . . , Ym i.i.d. N(µ2, σ2)
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{
H0 : µ1 = µ2

H1 : µ1 ̸= µ2

or{
H0 : µ1 = µ2

H1 : µ1 > µ2

Solution: the t-test
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X1, . . . , Xn i.i.d. F =? and Y1, . . . , Ym i.i.d. G =?

Let us assume (at least) the ordinal scale
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{
H0 : F = G

H1 : F ̸= G

or{
H0 : F = G,

H1 : X
st
> Y

Solution: the Mann-Whitney-Wilcoxon test
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Tasters express their perceptions
about some parameters of the
Gamonedo cheese, e.g. shape,
appearance, smell intensity, smell
quality, flavour intensity, flavour
quality and aftertaste, an overall
impression of the cheese.
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Well-being is a positive state
experienced by individuals and
societies. Similar to health, we can
define it as “a state of complete
physical, mental and social
well-being and not merely the
absence of disease or infirmity”
(WHO).

Problem
How to generalize the desired tests for imprecise data?
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Fuzzy numbers

A fuzzy number is defined by a mapping Ã : R→ [0, 1], called
a membership function, such that its α-cuts

Ãα =

{
{x ∈ R : Ã(x) ⩾ α} if α ∈ (0, 1],

cl{x ∈ R : Ã(x) > 0} if α = 0,

are nonempty compact intervals for each α ∈ [0, 1], where cl denotes
the closure operator.
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Basic arithmetic operations in the family of all fuzzy numbers F(R) are
defined with α-cut-wise operations on intervals:

▶ the sum of Ã ∈ F(R) and B̃ ∈ F(R) is given by the Minkowski
addition of their α-cuts, i.e. ∀α ∈ [0, 1] we have

(Ã+ B̃)α =
[
inf Ãα + inf B̃α, sup Ãα + sup B̃α

]
.

▶ the product of Ã ∈ F(R) by a scalar θ ∈ R is defined by the
Minkowski scalar product for intervals, i.e. ∀α ∈ [0, 1]

(θ ·Ã)α =
[
min{θ inf Ãα, θ sup Ãα},max{θ inf Ãα, θ sup Ãα}

]
.

Note
Unfortunately,

(
F(R),+, ·

)
has not a linear structure since in general

Ã+ (−1 · Ã) ̸= 1{0}. Similarly, in general, (Ã+ (−1 · B̃)) + B̃ ̸= Ã.
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Let λ denote a normalized measure associated with a continuous
distribution with support in [0, 1] and let γ > 0.

Then for any Ã, B̃ ∈ F(R) we define a metric Dλ
γ as follows

Dλ
γ (Ã, B̃) =

√∫ 1

0

[
(mid Ãα −mid B̃α)2 + γ(spr Ãα − spr B̃α)2

]
dλ(α),

where mid Ãα = 1
2(inf Ãα + sup Ãα), spr Ãα = 1

2(sup Ãα − inf Ãα).

(Gil et al., 2002; Trutschnig et al., 2009)

Whatever (λ, γ) is chosen Dλ
γ is invariant to translations and rotations.

Moreover, (F(R), Dλ
γ ) is a separable metric space and for each fixed λ

all metrics Dλ
γ are topologically equivalent.
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]
dλ(α),

where mid Ãα = 1
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Fuzzy random variables

Fuzzy random variables (random fuzzy numbers) integrate randomness
(associated with data generation) and fuzziness (associated with data
nature).

Definition (Puri M.L., Ralescu D., 1986)
Let (Ω,A, P ) be a probability space. A mapping X̃ : Ω→ F(R) is a
fuzzy random variable (random fuzzy number) if for all α ∈ [0, 1]
the α-level function is a compact random interval.

In other words, X̃ is a fuzzy random variable if and only if X̃ is a Borel
measurable function w.r.t. the Borel σ-field generated by the topology
induced by Dλ

γ .
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The Aumann-type mean of a fuzzy random variable X̃ is the fuzzy
number E(X̃) ∈ F(R) such that for each α ∈ [0, 1] the α-cut

(
E(X̃)

)
α

is equal to the Aumann integral of X̃α, i.e.(
E(X̃)

)
α
=

[
E(mid X̃α)− E(spr X̃α),E(mid X̃α) + E(spr X̃α)

]
.

Given a fuzzy sample X̃ = (X̃1, . . . , X̃n) we can determine the average
X̃ ∈ F(R) defined by its α-cuts

X̃α =
[ 1
n

n∑
i=1

mid (X̃i)α −
1

n

n∑
i=1

spr (X̃i)α,

1

n

n∑
i=1

mid (X̃i)α +
1

n

n∑
i=1

spr (X̃i)α

]
.
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Note
In contrast to the statistical analysis of numerical data one should be
aware of the following problems typical for fuzzy data:

▶ problems with subtraction and division of fuzzy numbers;

▶ the lack of universally accepted total ranking between fuzzy
numbers;

▶ there are not yet realistic suitable models for the distribution of
random fuzzy numbers;

▶ there are not yet Central Limit Theorems for random fuzzy
numbers that can be directly applied for making inference.

Conclusion
No straightforward generalizations of the classical statistical tests
(parametric/nonparametric) for fuzzy data exists.
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The generalized Mann-Whitney test for fuzzy data

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) denote independent
samples from two populations F and G, respectively.

We consider the following testing problem{
H0 : F = G,

H1 : X
st
> Y.

The Mann-Whitney test statistic is given by

U(X,Y) =
n∑

i=1

m∑
j=1

1(Xi > Yj).

Our goal: to generalize the Mann-Whitney test for fuzzy data.
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1 Ã B̃



How to rank fuzzy numbers?

1 Ã B̃
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1 ÃB̃



1 Ã B̃
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Consider the possibility and necessity measures (Dubous & Prade, 1983)
for ranking fuzzy numbers Ã and B̃:

Pos(Ã ≻ B̃) = sup
x>y

min{Ã(x), B̃(y)},

Nes(Ã ≻ B̃) = 1− Pos(Ã ⪯ B̃)

= 1− sup
x⩽y

min{Ã(x), B̃(y)}.

Obviously, Nes(Ã ≻ B̃) > 0 implies that Pos(Ã ≻ B̃) = 1.

Following Liu (2004) we aggregate both measures by the following index

Cr(Ã ≻ B̃) =
Pos(Ã ≻ B̃) + Nes(Ã ≻ B̃)

2
,

to obtain the credibility degree that Ã is larger than B̃.
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Lemma
For any trapezoidal fuzzy numbers Ã = Tra(a1, a2, a3, a4) and
B̃ = Tra(b1, b2, b3, b4) the credibility degree that Ã is larger than B̃ is
given by the following formula

Cr(Ã ≻ B̃) =



0, a4 ⩽ b1 and a3 < b2,
a4−h(a4,b1)
2(a4−a3)

, a4 > b1 and a3 < b2,
1
2 , a3 ⩾ b2, a4 ⩾ b1 or a2 ⩽ b3, a1 ⩽ b4,

1− h(a1,b4)−a1
2(a2−a1)

, a1 < b4 and a2 > b3,

1, b4 ⩽ a1 and a2 > b3,

where

h(a4, b1) =
a4b2 − b1a3

b2 − b1 + a4 − a3
,

h(a1, b4) =
b4a2 − a1b3

b4 − b3 + a2 − a1
.



Pos(Ã ≻ B̃) = 0, Nes(Ã ≻ B̃) = 0, Cr(Ã ≻ B̃) = 0

Pos(Ã ≻ B̃) = µA (h(a4, b1)), Nes(Ã ≻ B̃) = 0,
Cr(Ã ≻ B̃) = a4−h(a4,b1)

2(a4−a3)
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Pos(Ã ≻ B̃) = 1, Nes(Ã ≻ B̃) = 1− µA (h(a1, b4)),
Cr(Ã ≻ B̃) = 1− h(a1,b4)−a1

2(a2−a1)
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Pos(Ã ≻ B̃) = 1, Nes(Ã ≻ B̃) = 1− µA (h(a1, b4)),
Cr(Ã ≻ B̃) = 1− h(a1,b4)−a1

2(a2−a1)
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Let X̃ = (X̃1, . . . , X̃n) and Ỹ = (Ỹ1, . . . , Ỹm) denote independent
samples, each consisting of i.i.d. random fuzzy numbers.
We want to verify {

H0 : X̃
d
= Ỹ ,

H1 : X̃ ≻ Ỹ .

Using the credibility index for each pair of observations from both
samples we obtain the following test statistic

UCR(X̃, Ỹ) =

n∑
i=1

m∑
j=1

Cr(X̃i ≻ Ỹj).

To decide whether to reject or not the null hypothesis H0 we design
a permutation test.
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To decide whether to reject or not the null hypothesis H0 we design
a permutation test.



Algorithm 1: The generalized Mann-Whitney test for fuzzy data

Data: Fuzzy samples x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹm)

begin
u0 ←−

∑n
i=1

∑m
j=1Cr(x̃i ≻ ỹj) ;

Pool the data: w̃ = x̃ ⊎ ỹ ;

for b = 1 to B do
Take a permutation w̃∗ = (w̃∗

1, . . . , w̃
∗
n+m) of w̃ ;

x̃∗ = (x̃∗1, . . . , x̃
∗
n)←− (w̃∗

1, . . . , w̃
∗
n) ;

ỹ∗ = (ỹ1,
∗ . . . , ỹ∗m)←− (w̃∗

n+1, . . . , w̃
∗
n+m) ;

UCR ←−
∑n

i=1

∑m
j=1Cr(x̃∗i ≻ ỹ∗j ) ;

end
p-value←− 1

B

∑B
b=1 1

(
UCR(x̃

∗
b , ỹ

∗
b) ⩾ u0

)
.

end



Distance-based permutation tests for fuzzy data

Let X̃ = (X̃1, . . . , X̃n) and Ỹ = (Ỹ1, . . . , Ỹm) denote independent
samples, each consisting of i.i.d. random fuzzy numbers.
We want to verify {

H0 : X̃
d
= Ỹ ,

H1 : ¬H0.

▶ Permutation ANOVA for r.f.n. (PG, 2020)

TPG(X̃, Ỹ) =
[
Dλ

γ

(
X̃, Ỹ

)]2
.

▶ Test based on the energy distance (PG & O. Gadomska, 2022).

▶ Nearest neighbor test (PG & O. Gadomska, 2022).
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Distance-based permutation tests for fuzzy data

Let X̃ = (X̃1, . . . , X̃n) and Ỹ = (Ỹ1, . . . , Ỹm) denote independent
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The p-sample (p ⩾ 2) location problem

More generally, we observe p ⩾ 2 independent samples

X1 = (X11, . . . , X1n1) ∼ F1

...
Xp = (Xp1, . . . , Xpnp) ∼ Fp.

We want to verify the hypotheses{
H0 : F1 = . . . = Fp

H1 : F ⩽ F2 ⩽ . . . ⩽ Fp,

where at least one inequality is strict.
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In this case, the Jonckheere-Terpstra test can be used. The test
statistic is given by

J = U12 + U13 + . . . . . . . . . + U1p

+ U23 + U24 + . . . + U2p

. . . . . . . . . . . . . . . . . .
+ Up−1,p,

where Uij is the Mann-Whitney test statistic applied to samples Xi and
Xj for 1 ⩽ i < j ⩽ p.

The Jonckheere-Terpstra test statistic can be equivalently written as

J =
∑∑
1⩽i<j⩽p

Uij =

p−1∑
i=1

p∑
j=i+1

ni∑
r=1

nj∑
s=1

1(Xir < Xjs).
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The generalized Jonkheere-Terpstra test for fuzzy data

More generally, we observe p ⩾ 2 independent fuzzy samples:
X̃1 = (X̃11, . . . , X̃1n1), . . . , X̃p = (X̃p1, . . . , X̃pnp).
We want to verify {

H0 : X̃1
d
= X̃2

d
= . . .

d
= X̃p,

H1 : X̃1 ≻ X̃2 ≻ . . . ≻ X̃p.

The generalized Jonkheere-Terpstra test statistic:

JCR =
∑∑
1⩽i<j⩽p

UCR(X̃i, X̃j)

=
∑∑
1⩽i<j⩽p

ni∑
r=1

nj∑
s=1

Cr(X̃ir ≻ X̃js).
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Table: Power comparison (CR, PG and kNN tests) for testing
H0 : X̃1

d
= X̃2

d
= X̃3 vs. H1 : X̃3 ≻ X̃2 ≻ X̃1.

θ1 θ2 θ3 CR PG kNN
0 0.25 0.5 0.280 0.130 0.046
0 0.5 1 0.692 0.458 0.098
0 0.5 1.5 0.942 0.844 0.212
0 0.5 2 0.996 0.988 0.370
0 1 1 0.686 0.600 0.118
0 1 1.5 0.938 0.838 0.186
0 1 2 0.992 0.968 0.342
0 1 2.5 1.000 0.998 0.490
0 1.5 1.5 0.916 0.924 0.248
0 1.5 2 0.994 0.978 0.376
0 1.5 2.5 1.000 1.000 0.536

0.5 0.5 1 0.270 0.168 0.064
0.5 1 1.5 0.664 0.438 0.114



Conclusions and further research

▶ Due to certain difficulties with fuzzy modeling statistical tests with
imprecise data usually cannot be generalized straightforwardly from
their classical prototypes.

▶ Some of those difficulties in test constructions might be solved by
applying nonparametric tests based of permutations.

▶ Permutation tests require extremely limited assumptions, i.e.
exchangeability (we can exchange the labels of the observations
under H0 without affecting the results).

▶ The credibility index might appear useful for some test
constructions, especially for situations connected with the
dominance relation.
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and this is the end

Thank you for your attention :)
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