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Complex parameters of interest

Many measures of poverty and inequality are nonlinear
functions of a quantitative welfare veraible for the
population units.

This makes many small area estimation methods,
typically developed for estimating linear characteristics
such as small area means, inapplicable.
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FGT poverty measures; Foster et al. (1984)

FGT poverty measures: F,; = ﬁ Zszl Faij,

(0%

FOUJ: (Z_Eij> /(EIJ<Z)7./:17 aNi; &2071727

V4

with /(E; < z) = 1 if Ej < z, otherwise, it equals to 0;

Ej: a suitable quantitative measure of welfare for
individual j in small area 1/,

z: a fixed poverty line (threshold).
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Empirical Best Prediction (EBP) for
poverty indicators

One-to-one transformation: Yj = T(E;)

Foij = (T—(”) I(THYy) < z) = ha(Yy),

yi ={Y;i 1 <j <N} =(y,Y,): sub-vectors of
sample units s and unsampled units r for ith area.
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EBP for poverty indicators

The Best Predictor (BP) of F,;

FE — E, (Failys) = {EFa,ﬁZ QU}

JES; ¢#s;
where

si: sampled individuals in area /

Fo’ij is the BP of F,;; = h,(Yj) given by

FE — E, [ha(Yy)lys] = f ha(£) i, (tlys)dt, J ¢ s
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EBP for poverty indicators

Molina and Rao (2010) [4] proposed a Monte Carlo
approximation of EBP for F,;, where they used the
traditional Nested Error Regression (NER) model to

characterize the joint distribution of
{Kjaiz 17 7m7j: 17 7Ni}-

However, the homogeneity assumption of regression
coefficients and sampling variances in NER may not
hold in many real-world applications due to variations
in socio-economic conditions, data quality, and
sampling designs across areas.
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Example

2021 Italy — European Survey on Income and Living
Conditions (EUSILC)

Distributions of estimated regression coefficients across Italian provinces.
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Example

Distributions of the residuals by province.

Residuals
L

Province
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NER model with high-dimensional
parameters

An extension of the NER model:
Vi = Bo+ X + Vit @i = 1,00 ymij =1, N
Bo is a common intercept;

B;is a p x 1 vector of fixed regression coefficients for
cth

i area;
v; and e; are all independent with v; ~ N(0,02) and
€jj ~ N(0,0‘?)

Nested error regression with high dimensional
parameter (NERHDP).
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Model parameter estimation

Generalized estimating equations (GEE) with
area-specific tuning parameters

Allows to borrow strength across areas

When the tuning parameters are known, the model
parameters can be consistently estimated

Especially, for out-of-sample areas

Less synthetic small area estimates compared to
existing methods are produced for out-of-sample areas
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Design-based simulations

Fixed population: 2021 Italy European Survey on
Income and Living Conditions (EUSILC)

Parameters of interest: FGT measures (o« = 0,1) for
107 Italian provinces

Response variable: individual equalized annual net
income (E;j); shifted logarithm (Yj = log(E; + ¢)).

Simple random sampling (SRS) within province;

Sample size: 0.1 x N,
Partha Lahiri (JPSM @ UMCP) July 2, 2025 11/30
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Design-based simulations

We compare the performances of:
DIRECT: Direct estimator
MR: EBP introduced by Molina and Rao (2010) [4]
CLS: EBP based on our proposed NERHDP model

ELL: introduced by Elbers et al. (2003)[1]
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Experiment 1: All 107 provinces are
selected in the sample

Performances of estimators/predictors of small area poverty indicators for 107 provinces in
sample.

Predictor Mean RRMSE (EFF) % Mean absolute relative bias %
Head Count Ratio Poverty Gap Head Count Ratio Poverty Gap
DIRECT 48.71 (1.00) 60.43 (1.00) 21.30 25.28
MR 28.73 (0.59) 33.39 (0.55) 26.9 23.75
CLS 22.94 (0.47) 17.81 (0.29) 18.31 12.76
ELL 22.48 (0.46) 20.25 (0.34) 21.41 17.85
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Area-specific comparison

RRMSPE of Poverty Gap
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Area-specific comparison

RRMSPE

RRMSPE of Head Count Ratio
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The RRMSE and Relative Bias of the four estimators of head count ratio for each area.
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Experiment 2: 90 provinces are in sample &
17 are out of sample.

Performances of estimators/predictors of small area poverty indicators for 17
out-of-sample provinces.

Predictor Mean RRMSE (EFF) % Mean absolute relative bias %
Head Count Ratio Poverty Gap Head Count Ratio Poverty Gap
MR 35.36 (1.00) 41.87 (1.00) 34.52 31.79
CLS 27.49 (0.78) 16.69 (0.40) 25.22 15.27
ELL 26.04 (0.74) 20.55 (0.49) 24.92 17.44
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Area-specific comparison

RRMSPE of Poverty Gap Relative bias of Poverty Gap
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The RRMSE and Relative Bias of the EBP estimators of poverty gap for out of sample
areas.

P L=l (S @ WD) Tl 2, 2 T



Flexible modeling

Area-specific comparison

RRMSPE of Head Count Ratio Relative bias of Head Count Ratio
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The RRMSE and Relative Bias of the EBP estimators of head count ratio for out of
sample areas.
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Application: poverty mapping for Albania

2002 Living Standards Measurement Survey (LSMS)
data: 3,591 households

374 municipalities: 213 sampled municipalities and 161
out-of-sample municipalities.

Auxiliary data: 2001 Census, which covers 726,895
households across Albania.

Eji: household monthly consumption expenditure. Yj;:
shifted logarithm transformation of Ej;.

The poverty line: 4,891 Leks per month.
Partha Lahiri (JPSM @ UMCP) July 2, 2025 19/30
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Results

Population size, sample size, direct and CLS estimates of headcount ratios (%) and
poverty gaps (%), and the associated CVs (%) of direct and CLS estimators for the Albania
municipalities with sample size closest to minimum, first quartile, median, third quartile, and
maximum.

Headcount Ratio Poverty Gap
Municipality  N; n; Fyo FS® CV(FY) CV(FES) Ry ESS CQV(FY)  CQV(ESH)
Hajmel 1111 6 3333 2382 56.96 27.01 152 592 7056 31.31
Orenje 1419 16 1250 20.69  66.19 15.06 200 497  66.03 17.44
B.Curri 1488 40 20.00 2454  32.82 8.57 565 551  43.01 9.56
Gramsh 2503 64 2355 17.97 24.48 0.69 475 3.64  38.93 21.90
Tirane 89764 600 12.43 11.72  10.91 4.46 249 231 1471 4.72

If_o‘”,-’: direct weighted estimator for headcount ratio;

ﬁlmf: direct weighted estimator for poverty gap;
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Albanian poverty maps

Head Count Ratios (%)
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Municipality-level direct and CLS estimates of headcount ratios in Albania.
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Municipality-level CV of headcount ratios for direct and CLS estimates in Albania.
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Albanian poverty maps
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Municipality-level direct and CLS estimates of poverty gaps in Albania.
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Municipality-level CV of poverty gaps for direct and CLS estimates in Albania.
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A Quote from George Box

Statisticians, like artists, have the bad habit of
falling in love with their models.
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But as George Box said

Essentially, all models are wrong, but some are
useful.
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An interesting quote

...D.J. Finney once wrote about the statistician
whose client comes in and says, 'Here is my
mountain of trash. Find the gems that lie therein.’
Finney's advice was to not throw him out of the
office but to attempt to find out what he considers
"gems”. After all, if the trained statistician does

not help, he will find some one who will....”
David Salsburg, ASA Connect Discussion
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Paper & code

arXiv preprint: Chen et al. (2025) GitHub: R function hdp
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